MB91625 Series

- Harvard architecture allowing program access and data access to be executed simultaneously
- Instruction prefetch function has been added with 4 word instruction queue of CPU
- Instruction compatible with FR family CPU
- Additional bit search instructions
- No resource instructions and coprocessor instructions
- Maximum operating frequency
- CPU : 60 MHz
- Resources : 40 MHz
- DMA controller (DMAC)
- 8 channels
- Address space : 32 bits (4 Gbytes)
- Transfer modes : Block transfer/burst transfer/demand transfer
- Address update : Increment/decrement/fixed (increment/decrement step size of 1, 2, or 4)
- Transfer data length : Selectable from 8-bit, 16-bit, 32-bit
- Block size : 1 to 16
- Number of transfers : 1 to 65535
- Transfer requests
- Requests from software
- Interrupt requests from peripheral resources (interrupt requests are shared, including external interrupts)
- Reload functions : Reload can be specified on all channels
- Priority order : Fixed (ch. $0>$ ch. $1>$ ch. $2>$ ch. $3>\ldots$...) or round-robin
- Interrupt requests : Interrupts can be generated for transfer complete, transfer error, and transfer interrupted.
- Multifunction serial interface
- 4 channels with 16-byte FIFO, 8 channels without FIFO
- Operation mode is selectable from the followings for each channel (For ch.0, ${ }^{2} \mathrm{C}$ is not available.)
- UART
- Full-duplex double buffer
- Selectable parity on/off
- Built-in dedicated baud rate generator
- External clock can be used as a serial clock
- Error detection function for parity, frame and overrun errors
- CSIO
- Full-duplex double buffer
- Built-in dedicated baud rate generator
- Overrun error detection function
- ${ }^{2} \mathrm{C}$
- Supports both standard mode (Max 100 kbps)and Fast mode (Max 400 kbps)
- Some channels are 5 V tolerant

- Interrupts

- Total of 32 external interrupts (some pins are 5 V tolerant)
- Interrupts from peripheral resources
- Programmable interrupt levels (16 levels)
- Can be used to return from stop mode, sleep mode

MB91625 Series

(Continued)

- Clock generation
- Main clock (MCLK) oscillator
- Sub clock (SBCLK) oscillator
- PLL clock (PLLCLK) oscillator
- Low-power dissipation mode
- Stop mode
- Watch mode
- Sleep mode
- Doze mode
- Clock division function
- Other features
- I/O port
- INIT pin is provided as a reset pin
- Watchdog timer reset, software reset
- Delay interrupt
- Power supply : Single power supply (2.7 V to 3.6 V)

MB91625 Series

Pin no.	Pin name	I/O circuit type ${ }^{* 1}$	Function	CMOS level input	CMOS level hysteresis input
LQFP-100					
8	P34	D*2	General-purpose I/O port	-	\bigcirc
	TIOA14		Base timer ch. 14 TIOA pin	-	-
	$\begin{aligned} & \text { SOUT7 } \\ & \text { (SDA7) } \end{aligned}$		Multifunction serial interface ch. 7 output pin. This pin operates as SOUT7 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA7 when it is used in an $I^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc
	OUT4		32-bit output compare ch. 4 output pin	-	-
	INT12		External interrupt request 12 input pin	-	\bigcirc
9	P35	D*2	General-purpose I/O port	-	\bigcirc
	TIOB14		Base timer ch. 14 TIOB pin	-	\bigcirc
	SIN7		Multifunction serial interface ch. 7 input pin	-	\bigcirc
	OUT5		32-bit output compare ch. 5 output pin	-	-
	INT13		External interrupt request 13 input pin	-	\bigcirc
10	P36	D*2	General-purpose I/O port	-	\bigcirc
	TIOA15		Base timer ch. 15 TIOA pin	-	\bigcirc
	$\begin{aligned} & \text { SCK7 } \\ & \text { (SCL7) } \end{aligned}$		Multifunction serial interface ch. 7 clock I/O pin. This pin operates as SCK7 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL7 when it is used in an I2C (operation mode 4).	-	\bigcirc
	OUT6		32 -bit output compare ch. 6 output pin	-	-
	INT14		External interrupt request 14 input pin	-	\bigcirc
11	P37	D*2	General-purpose I/O port	-	\bigcirc
	TIOB15		Base timer ch. 15 TIOB pin	-	\bigcirc
	OUT7		32-bit output compare ch. 7 output pin	-	-
	INT15		External interrupt request 15 input pin	-	\bigcirc
12	P40	D*2	General-purpose I/O port	-	\bigcirc
	SOUT8 (SDA8)		Multifunction serial interface ch. 8 output pin. This pin operates as SOUT8 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA8 when it is used in an $I^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc

(Continued)

MB91625 Series

Pin no.	Pin name	I/O circuit type*1	Function	CMOS level input	CMOSlevelhysteresisinput
LQFP-100					
13	P41	D*2	General-purpose I/O port	-	\bigcirc
	SIN8		Multifunction serial interface ch. 8 input pin	-	\bigcirc
14	P42	D*2	General-purpose I/O port	-	\bigcirc
	$\begin{gathered} \text { SCK8 } \\ \text { (SCL8) } \end{gathered}$		Multifunction serial interface ch. 8 clock I/O pin. This pin operates as SCK8 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL8 when it is used in an I2C (operation mode 4).	-	\bigcirc
15	P43	D*2	General-purpose I/O port	-	\bigcirc
	P44		General-purpose I/O port	-	\bigcirc
16	$\begin{aligned} & \text { SOUT9 } \\ & \text { (SDA9) } \end{aligned}$	D*2	Multifunction serial interface ch. 9 output pin. This pin operates as SOUT9 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA9 when it is used in an $I^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc
17	P45	D*2	General-purpose I/O port	-	\bigcirc
	SIN9		Multifunction serial interface ch. 9 input pin	-	\bigcirc
	P46		General-purpose I/O port	-	\bigcirc
18	$\begin{gathered} \text { SCK9 } \\ \text { (SCL9) } \end{gathered}$		Multifunction serial interface ch. 9 clock I/O pin. This pin operates as SCK9 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL9 when it is used in an I2C (operation mode 4).	-	\bigcirc
19	P47	D*2	General-purpose I/O port	-	\bigcirc
20	$\overline{\text { INIT }}$	P	External reset input pin. A reset is valid when $\overline{\mathrm{NIT}}=\mathrm{L}$. The I/O circuit type for the Flash memory products is P.	-	\bigcirc
21	MDO	P	Mode 0 pin. The I/O circuit type for the Flash memory products is P. During normal operation, MDO $=\mathrm{L}$ must be input. During serial programming to Flash memory, MD0 $=\mathrm{H}$ must be input.	-	\bigcirc
22	MD1	P	Mode 1 pin. Input must always be at the "L" level. The I/O circuit type for the Flash memory products is P.	-	\bigcirc
23	X0	A	Main clock (oscillation) input pin	-	\bigcirc
24	X1	A	Main clock (oscillation) I/O pin	-	-
25	Vss	-	GND pin	-	-

(Continued)

MB91625 Series

Pin no. LQFP-100	Pin name	I/O circuit type ${ }^{\star 1}$	Function	CMOS level input	CMOS level hysteresis input
34	P75	E	General-purpose I/O port	-	\bigcirc
	AN5		10-bit A/D converter ch. 5 analog input pin	-	-
	SOUT0		Multifunction serial interface ch. 0 output pin. This pin operates as SOUT0 when it is used in a UART/CSIO (operation modes 0 to 2).	-	-
	TMIO		16-bit reload timer ch. 0 input pin	-	\bigcirc
	OUT5_1		32-bit output compare ch. 5 output pin (Port 1)	-	-
	INT21		External interrupt request 21 input pin	-	\bigcirc
35	P76	E	General-purpose I/O port	-	\bigcirc
	AN6		10-bit A/D converter ch. 6 analog input pin	-	-
	SIN0		Multifunction serial interface ch. 0 input pin	-	\bigcirc
	TMI1		16-bit reload timer ch. 1 input pin	-	\bigcirc
	OUT6_1		32-bit output compare ch. 6 output pin (Port 1)	-	-
	INT22		External interrupt request 22 input pin	-	\bigcirc
36	P77	E	General-purpose I/O port	-	\bigcirc
	AN7		10-bit A/D converter ch. 7 analog input pin	-	-
	SCK0		Multifunction serial interface ch. 0 clock I/O pin. This pin operates as SCK0 when it is used in a UART/ CSIO (operation modes 0 to 2).	-	\bigcirc
	TMI2		16-bit reload timer ch. 2 input pin	-	\bigcirc
	OUT7_1		32-bit output compare ch. 7 output pin (Port 1)	-	-
	INT23		External interrupt request 23 input pin	-	\bigcirc
37	P80	E	General-purpose I/O port	-	\bigcirc
	AN8		10-bit A/D converter ch. 8 analog input pin	-	-
	INO_1		32-bit input capture ch. 0 input pin (Port 1)	-	\bigcirc
	INT24		External interrupt request 24 input pin	-	\bigcirc

(Continued)

MB91625 Series

Pin no. LQFP-100	Pin name	I/O circuit type*1	Function	CMOS level input	CMOS level hysteresis input
38	P81	E	General-purpose I/O port	-	\bigcirc
	AN9		10-bit A/D converter ch. 9 analog input pin	-	-
	IN1_1		32-bit input capture ch. 1 input pin (Port 1)	-	\bigcirc
	INT25		External interrupt request 25 input pin	-	\bigcirc
39	P82	E	General-purpose I/O port	-	\bigcirc
	AN10		10-bit A/D converter ch. 10 analog input pin	-	-
	IN2_1		32-bit input capture ch. 2 input pin (Port 1)	-	\bigcirc
	INT26		External interrupt request 26 input pin	-	\bigcirc
40	P83	E	General-purpose I/O port	-	\bigcirc
	AN11		10-bit A/D converter ch. 11 analog input pin	-	-
	IN3_1		32-bit input capture ch. 3 input pin (Port 1)	-	\bigcirc
	INT27		External interrupt request 27 input pin	-	\bigcirc
41	P84	E	General-purpose I/O port	-	\bigcirc
	AN12		10-bit A/D converter ch. 12 analog input pin	-	-
	IN4_1		32-bit input capture ch. 4 input pin (Port 1)	-	\bigcirc
	INT28		External interrupt request 28 input pin	-	\bigcirc
42	P85	E	General-purpose I/O port	-	\bigcirc
	AN13		10-bit A/D converter ch. 13 analog input pin	-	-
	IN5_1		32-bit input capture ch. 5 input pin (Port 1)	-	\bigcirc
	INT29		External interrupt request 29 input pin	-	\bigcirc
43	P86	E	General-purpose I/O port	-	\bigcirc
	AN14		10-bit A/D converter ch. 14 analog input pin	-	-
	IN6_1		32-bit input capture ch. 6 input pin (Port 1)	-	\bigcirc
	INT30		External interrupt request 30 input pin	-	\bigcirc
44	P87	E	General-purpose I/O port	-	\bigcirc
	AN15		10-bit A/D converter ch. 15 analog input pin	-	-
	IN7_1		32-bit input capture ch. 7 input pin (Port 1)	-	\bigcirc
	INT31		External interrupt request 31 input pin	-	\bigcirc
45	AVcc	-	10-bit A/D converter and 8-bit D/A converter analog power pin	-	-
46	AVRH	-	10-bit A/D converter analog reference voltage input pin	-	-
47	AVss	-	10-bit A/D converter and 8-bit D/A converter GND pin	-	-

(Continued)

MB91625 Series

Pin no.	Pin name	I/O circuit type*1	Function	CMOS level input	CMOS level hysteresis input
61	P50	C	General-purpose I/O port	-	\bigcirc
	SOUT10 (SDA10)		Multifunction serial interface ch. 10 output pin. This pin operates as SOUT10 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA10 when it is used in an $I^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc
	AINO_1		Up/Down counter ch. 0 AIN input pin (Port 1)	-	\bigcirc
62	P51	C	General-purpose I/O port	-	\bigcirc
	SIN10		Multifunction serial interface ch. 10 input pin	-	\bigcirc
	BINO_1		Up/Down counter ch. 0 BIN input pin (Port 1)	-	\bigcirc
63	P52	C	General-purpose I/O port	-	\bigcirc
	$\begin{aligned} & \text { SCK10 } \\ & \text { (SCL10) } \end{aligned}$		Multifunction serial interface ch. 10 clock I/O pin. This pin operates as SCK10 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL10 when it is used in an $I^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc
	ZIN0_1		Up/Down counter ch. 0 ZIN input pin (Port 1)	-	\bigcirc
64	P53	C	General-purpose I/O port	-	\bigcirc
	FRCK1		32-bit free-run timer ch. 1 external clock input pin	-	\bigcirc
	INT21_2		External interrupt request 21 input pin (Port 2)	-	\bigcirc
65	P54	C	General-purpose I/O port	-	\bigcirc
	SOUT11 (SDA11)		Multifunction serial interface ch. 11 output pin. This pin operates as SOUT11 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA11 when it is used in an $I^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc
	AlN1_1		Up/Down counter ch. 1 AIN input pin (Port 1)	-	\bigcirc
66	P55	C	General-purpose I/O port	-	\bigcirc
	SIN11		Multifunction serial interface ch. 11 input pin	-	\bigcirc
	BIN1_1		Up/Down counter ch. 1 BIN input pin (Port 1)	-	\bigcirc
	ADTRG0		10-bit A/D converter external trigger input pin	-	\bigcirc

(Continued)

MB91625 Series

Pin no.	Pin name	I/O circuit type*1	Function	CMOS level input	CMOS level hysteresis input
67	P56	C	General-purpose I/O port	-	\bigcirc
	SCK11 (SCL11)		Multifunction serial interface ch. 11 clock I/O pin. This pin operates as SCK11 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL11 when it is used in an $I^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc
	ZIN1_1		Up/Down counter ch. 1 ZIN input pin (Port 1)	-	\bigcirc
	FRCK0		32-bit free-run timer ch. 0 external clock input pin	-	\bigcirc
68	P57	C	General-purpose I/O port	-	\bigcirc
69	P60	C	General-purpose I/O port	-	\bigcirc
	AIN2_1		Up/Down counter ch. 2 AIN input pin (Port 1)	-	\bigcirc
70	P61	C	General-purpose I/O port	-	\bigcirc
	BIN2_1		Up/Down counter ch. 2 BIN input pin (Port 1)	-	\bigcirc
71	P62	C	General-purpose I/O port	-	\bigcirc
	ZIN2_1		Up/Down counter ch. 2 ZIN input pin (Port 1)	-	\bigcirc
72	P63	C	General-purpose I/O port	-	\bigcirc
	FRCK1_1		32-bit free-run timer ch. 1 external clock input pin (Port 1)	-	\bigcirc
	INT22_2		External interrupt request 22 input pin (Port 2)	-	\bigcirc
73	P64	C	General-purpose I/O port	-	\bigcirc
	AlN3_1		Up/Down counter ch. 3 AIN input pin (Port 1)	-	\bigcirc
74	P65	C	General-purpose I/O port	-	\bigcirc
	BIN3_1		Up/Down counter ch. 3 BIN input pin (Port 1)	-	\bigcirc
	$\begin{gathered} \text { ADTRGO } \\ 1 \end{gathered}$		10-bit A/D converter external trigger input pin (Port 1)	-	\bigcirc
75	P66	C	General-purpose I/O port	-	\bigcirc
	ZIN3_1		Up/Down counter ch. 3 ZIN input pin (Port 1)	-	\bigcirc
	FRCK0_1		32-bit free-run timer ch. 0 external clock input pin (Port 1)	-	\bigcirc
76	P67	C	General-purpose I/O port	-	\bigcirc
	INT23_2		External interrupt request 23 input pin (Port 2)	-	\bigcirc

(Continued)

MB91625 Series

Prin no.	Pin name	I/O circuit type*1	Function	CMOS level input	CMOS level hysteresis input
83	P06	C	General-purpose I/O port	-	\bigcirc
	TIOA3		Base timer ch. 3 TIOA pin	-	\bigcirc
	$\begin{aligned} & \text { SCK1 } \\ & \text { (SCL1) } \end{aligned}$		Multifunction serial interface ch. 1 clock I/O pin. This pin operates as SCK1 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL1 when it is used in an $I^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc
	IN6		32-bit input capture ch. 6 input pin	-	\bigcirc
84	P07	C	General-purpose I/O port	-	\bigcirc
	TIOB3		Base timer ch. 3 TIOB pin	-	\bigcirc
	IN7		32 -bit input capture ch. 7 input pin	-	\bigcirc
85	P10	C	General-purpose I/O port	-	\bigcirc
	TIOA4		Base timer ch. 4 TIOA pin	-	-
	$\begin{aligned} & \text { SOUT2 } \\ & \text { (SDA2) } \end{aligned}$		Multifunction serial interface ch. 2 output pin. This pin operates as SOUT2 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA2 when it is used in an $I^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc
	AINO		Up/Down counter ch. 0 AIN input pin	-	\bigcirc
	INTO		External interrupt request 0 input pin	-	\bigcirc
86	P11	C	General-purpose I/O port	-	\bigcirc
	TIOB4		Base timer ch. 4 TIOB pin	-	\bigcirc
	SIN2		Multifunction serial interface ch. 2 input pin	-	\bigcirc
	BIN0		Up/Down counter ch.0 BIN input pin	-	\bigcirc
	INT1		External interrupt request 1 input pin	-	\bigcirc
87	P12	C	General-purpose I/O port	-	\bigcirc
	TIOA5		Base timer ch. 5 TIOA pin	-	\bigcirc
	$\begin{gathered} \text { SCK2 } \\ \text { (SCL2) } \end{gathered}$		Multifunction serial interface ch. 2 clock I/O pin. This pin operates as SCK2 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL2 when it is used in an ${ }^{12} \mathrm{C}$ (operation mode 4).	-	\bigcirc
	ZIN0		Up/Down counter ch. 0 ZIN input pin	-	\bigcirc
	INT2		External interrupt request 2 input pin	-	\bigcirc
88	P13	C	General-purpose I/O port	-	\bigcirc
	TIOB5		Base timer ch. 5 TIOB pin	-	\bigcirc
	INT3		External interrupt request 3 input pin	-	\bigcirc

(Continued)

MB91625 Series

Pin no.	Pin name	I/O circuit type*1	Function	CMOS level input	CMOS level hysteresis input
LQFP-100					
89	P14	C	General-purpose I/O port	-	\bigcirc
	TIOA6		Base timer ch. 6 TIOA pin	-	-
	$\begin{aligned} & \text { SOUT3 } \\ & \text { (SDA3) } \end{aligned}$		Multifunction serial interface ch. 3 output pin. This pin operates as SOUT3 when the product is used in a UART/CSIO (operation modes 0 to 2) and as SDA3 when it is used in an $I^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc
	AIN1		Up/Down counter ch. 1 AIN input pin	-	\bigcirc
	INT4		External interrupt request 4 input pin	-	\bigcirc
90	P15	C	General-purpose I/O port	-	\bigcirc
	TIOB6		Base timer ch. 6 TIOB pin	-	\bigcirc
	SIN3		Multifunction serial interface ch. 3 input pin	-	\bigcirc
	BIN1		Up/Down counter ch. 1 BIN input pin	-	\bigcirc
	INT5		External interrupt request 5 input pin	-	\bigcirc
91	P16	C	General-purpose I/O port	-	\bigcirc
	TIOA7		Base timer ch. 7 TIOA pin	-	\bigcirc
	$\begin{aligned} & \text { SCK3 } \\ & \text { (SCL3) } \end{aligned}$		Multifunction serial interface ch. 3 clock I/O pin. This pin operates as SCK3 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL3 when it is used in an $I^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc
	ZIN1		Up/Down counter ch. 1 ZIN input pin	-	\bigcirc
	INT6		External interrupt request 6 input pin	-	\bigcirc
92	P17	C	General-purpose I/O port	-	\bigcirc
	TIOB7		Base timer ch. 7 TIOB pin	-	\bigcirc
	INT7		External interrupt request 7 input pin	-	\bigcirc
93	P20	D*2	General-purpose I/O port	-	\bigcirc
	TIOA8		Base timer ch. 8 TIOA pin	-	-
	SOUT4 (SDA4)		Multifunction serial interface ch. 4 output pin. This pin operates as SOUT4 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA4 when it is used in an $I^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc
	AIN2		Up/Down counter ch. 2 AIN input pin	-	\bigcirc
94	P21	D*2	General-purpose I/O port	-	\bigcirc
	TIOB8		Base timer ch. 8 TIOB pin	-	\bigcirc
	SIN4		Multifunction serial interface ch. 4 input pin	-	\bigcirc
	BIN2		Up/Down counter ch. 2 BIN input pin	-	\bigcirc

(Continued)

MB91625 Series

(Continued)

Pin no.	Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type } \end{gathered}$	Function	CMOS level input	CMOS level hysteresis input
95	P22	D*2	General-purpose I/O port	-	\bigcirc
	TIOA9		Base timer ch. 9 TIOA pin	-	\bigcirc
	$\begin{gathered} \text { SCK4 } \\ \text { (SCL4) } \end{gathered}$		Multifunction serial interface ch. 4 clock I/O pin. This pin operates as SCK4 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL4 when it is used in an $I^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc
	ZIN2		Up/Down counter ch. 2 ZIN input pin	-	\bigcirc
96	P23	D*2	General-purpose I/O port	-	\bigcirc
	TIOB9		Base timer ch. 9 TIOB pin	-	\bigcirc
97	P24	D*2	General-purpose I/O port	-	\bigcirc
	TIOA10		Base timer ch. 10 TIOA pin	-	-
	$\begin{aligned} & \text { SOUT5 } \\ & \text { (SDA5) } \end{aligned}$		Multifunction serial interface ch. 5 output pin. This pin operates as SOUT5 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA5 when it is used in an $I^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc
	AIN3		Up/Down counter ch. 3 AIN input pin	-	\bigcirc
	OUTO		32-bit output compare ch. 0 output pin	-	-
98	P25	D*2	General-purpose I/O port	-	\bigcirc
	TIOB10		Base timer ch. 10 TIOB pin	-	\bigcirc
	SIN5		Multifunction serial interface ch. 5 input pin	-	\bigcirc
	BIN3		Up/Down counter ch. 3 BIN input pin	-	\bigcirc
	OUT1		32-bit output compare ch. 1 output pin	-	-
99	P26	D*2	General-purpose I/O port	-	\bigcirc
	TIOA11		Base timer ch. 11 TIOA pin	-	\bigcirc
	$\begin{aligned} & \text { SCK5 } \\ & \text { (SCL5) } \end{aligned}$		Multifunction serial interface ch. 5 clock I/O pin. This pin operates as SCK5 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL5 when it is used in an ${ }^{2} \mathrm{C}$ (operation mode 4).	-	\bigcirc
	ZIN3		Up/Down counter ch. 3 ZIN input pin	-	\bigcirc
	OUT2		32-bit output compare ch. 2 output pin	-	-
100	Vcc	-	Power pin	-	-

*1: Refer to "■ I/O CIRCUIT TYPE" for details on the I/O circuit types.
*2: 5 V tolerant pin

MB91625 Series

Type	Circuit	Remarks
D		- CMOS level output - CMOS level hysteresis input - 5 V tolerant input - With standby control Note: When this pin is used as an $I^{2} \mathrm{C}$ pin, the digital output P -ch transistor is always off.
E		- CMOS level output - CMOS level hysteresis input - With input control - Analog input - With pull-up control - With standby control

(Continued)

MB91625 Series

(Continued)

MB91625 Series

(Continued)

Type	Circuit	Remarks
P		- Flash memory product only - CMOS level hysteresis input - High voltage control for testing Flash memory

MB91625 Series

PRECAUTIONS FOR HANDLING THE DEVICES

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your FUJITSU MICROELECTRONICS semiconductor devices.

1. Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

- Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

- Recommended Operating Conditions

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

- Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.
(1) Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.
(2) Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device.
Therefore, avoid this type of connection.
(3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

MB91625 Series

- Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the FUJITSU MICROELECTRONICS recommended conditions for baking.
Condition: $+125^{\circ} \mathrm{C} / 24 \mathrm{~h}$

- Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:
(a) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
(b) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
(c) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of $1 \mathrm{M} \Omega$). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
(d) Ground all fixtures and instruments, or protect with anti-static measures.
(e) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

3. Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following:
(1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.
(2) Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.
(3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
(4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.
(5) Smoke, Flame

Note: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.
Customers considering the use of FUJITSU MICROELECTRONICS products in other special environmental conditions should consult with sales representatives.

MB91625 Series

HANDLING DEVICES

- Power supply pins

In products with multiple Vcc and Vss pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with the V_{cc} and V_{ss} pins of this device at low impedance.
It is also advisable that a ceramic capacitor of approximately $0.1 \mu \mathrm{~F}$ be connected as a bypass capacitor between $V_{c c}$ and $V_{s s}$ pins near this device.

- Crystal oscillator circuit

Noise near the X 0 and X 1 pins may cause the device to malfunction. Design the printed circuit board so that XO , X1, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible.
It is strongly recommended that the PC board artwork be designed such that the X 0 and X 1 pins are surrounded by ground plane as this is expected to produce stable operation.
If a 32 kHz oscillator is used (X0A, X1A), use the PK2 pin for an input that changes as infrequently as possible. Furthermore, take steps such as shown in the following figure to prevent the XOA and PK2 wiring from running parallel to each other.
If 32 kHz oscillation is not used, there are no limitations.

- Using an external clock

When using an external clock, the clock signal should be input to the X 0 pin only and the X 1 should be kept open.

- Example of Using an External Clock MB91625 series

MB91625 Series

- C Pin

As MB91625 series includes an internal regulator, always connect a bypass capacitor of approximately $4.7 \mu \mathrm{~F}$ to the C pin for use by the regulator.

- Mode pins (MD0, MD1)

Connect the MD pin (MD0, MD1) directly to Vcc or Vss pins. Design the printed circuit board such that the pullup/down resistance stays low, as well as the distance between the mode pins and $\mathrm{V}_{\text {cc }}$ pins or $\mathrm{V}_{\text {ss }}$ pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise.

- Notes on power-on
- To ensure that the internal regulator and the oscillator have stabilized immediately after the power is turned on, keep an "L" level input connected to the INIT pin for the duration of the regulator voltage stabilization wait time + the oscillator start time of the oscillator + the main oscillator stabilization wait time.
- Turn power on/off in the following order

Turning on: $\mathrm{Vcc} \rightarrow \mathrm{AV} \mathrm{cc} \rightarrow \mathrm{AVRH}$
Turning off: AVRH $\rightarrow \mathrm{AVcc} \rightarrow \mathrm{Vcc}$
Release the reset (INIT pin "L" level to "H" level) after the power supply has stabilized.

- Caution on Operations during PLL Clock Mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency.
However, FUJITSU MICROELECTRONICS will not guarantee results of operations if such failure occurs.

MB91625 Series

BLOCK DIAGRAM

MB91625 Series

MEMORY SPACE

1. Memory Space

The FR family has 4 Gbytes of logical address space (2^{32} addresses) available to the CPU by linear access.

- Direct Addressing Areas

The following areas in the address space are used as I/O areas.
These areas are called direct addressing areas, and the address of an operand in these areas can be specified directly within an instruction. The size of the directly addressable area depends on the length of the data being accessed as follows.

- Byte data access : 0000 0000н to 0000 00FFн
- Half word data access : 0000 0000н to 000001 FFн
- Word data access :0000 0000н to 000003 FF н

MB91625 Series

2. Memory Map

Notes: • Small sector area is related to flash products only. Please refer to "Flash Memory" in the "Hardware Manual" for more details.

- Do not access the reserved areas.

MB91625 Series

I/O MAP
[How to read the table]

Address	Register				Block
	+ 0	+ 1	+ 2	+ 3	
0000 0000н	PDR0 [R/W] B, H XXXXXXXX	PDR1 [R/W] B, H XXXXXXXX	PDR2 [R/W] B, H XXXXXXXXXXX	PDR3 [R/W] B, H XXXXXXXX	Port data register
0000 003CH	$\begin{gathered} \hline \text { WDTCR0 [R/W] } \\ \text { B, H } \\ -0--0000 \end{gathered}$	$\begin{gathered} \hline \text { WDTCPRO [R/W] } \\ \text { B, H } \\ 00000000 \end{gathered}$			Watchdog timer
$\begin{gathered} 0000 \text { 0040H } \\ \hline \end{gathered}$	EIRRO [R/W] B, H, W 4 00010000	$\begin{gathered} \text { ENIR0 }[R / W] \\ \text { B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ELVRO [R/ } \\ 00000000 \end{gathered}$	$\begin{aligned} & N] \text { B, H, W } \\ & 00000000 \end{aligned}$	External interrupt 0 to 7
	B	Initial value after re"1": Initial value"1" 0 " : Initial value"0" X - " : Initial value unerved bitAccess unit(B : byte, H : half woRead/write attribute "R" $:$ Indicates th "R/W": Indicates th "W" : Indicates thRegister name (colat address $4 \mathrm{n}+2 . .$.	et defined or undefined bit d, W : word) at there is a read on at there is a read/wr at there is a write on mn 1 of the register	: Reserved area y bit. te bit. y bit. is at address $4 n$,	mn 2 is

Notes: - When performing a data access, the addresses should be as below.

- Word access : Address should be multiples of 4 (least significant 2 bits should be "008")
- Half word access : Address should be multiples of 2 (least significant bit should be " O_{B} ")
- Byte access: -
- Do not access the reserved areas.

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 0000н	$\begin{gathered} \hline \text { PDRO }[R / W] B, H \\ X X X X X X X \end{gathered}$	PDR1 [R/W] B,H XXXXXXXX	PDR2 [R/W] B,H XXXXXXXX	PDR3 [R/W] B,H XXXXXXXX	Port data register
0000 0004н	PDR4 [R/W] B,H XXXXXXXX	PDR5 [R/W] B,H XXXXXXXX	PDR6 [R/W] B,H XXXXXXXX	PDR7 [R/W] B,H XXXXXXXX	
0000 0008H	PDR8 [R/W] B,H $X X X X X X X X$	$\begin{gathered} \text { PDR9 [R/W] B,H } \\ ----X X X ~ \end{gathered}$	PDRA [R/W] B,H XXXXXXXX	-	
$\begin{array}{\|c} 0000 \text { 000CH } \\ \text { to } \\ 00000010 \mathrm{H} \end{array}$	-				
0000 0014	$\underset{-----X X X ~}{\text { PDRK }}$	-			
$\begin{gathered} 0000 \text { 0018 } \\ \text { to } \\ 000001 \text { C }_{H} \end{gathered}$	-				
$\begin{gathered} 00000020_{\mathrm{H}} \\ \text { to } \\ 0000038 \mathrm{H} \end{gathered}$	-				Reserved
0000 003Cн	$\begin{gathered} \hline \text { WDTCRO }[R / W] \\ B, H \\ -0--0000 \end{gathered}$	$\begin{gathered} \hline \text { WDTCPRO }[\mathrm{R} / \mathrm{W}] \\ \text { B,H } \\ 00000000 \end{gathered}$	-		Watchdog timer
0000 0040н	$\begin{gathered} \hline \text { EIRRO [R/W] } \\ B, H, W \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { ENIRO [R/W] } \\ B, H, W \\ 00000000 \end{gathered}$	ELVRO [R/W] B,H,W 0000000000000000		External interrupt 0 to 7
0000 0044	DICR [------0	-			Delay interrupt
0000 0048	TMRLRAO [R/W] H XXXXXXXX XXXXXXXX		TMR0 [R] H XXXXXXXX XXXXXXXX		16-bit
0000 004CH	-		$\begin{aligned} & \hline \text { TMCSRO [R/W] H } \\ & --000000-000000 \end{aligned}$		ch. 0
0000 0050н	TMRLRA1 [R/W] H XXXXXXXX XXXXXXXX		TMR1 [R] H XXXXXXXX XXXXXXXX		$\begin{aligned} & \text { 16-bit } \\ & \text { reload timer } \\ & \text { ch. } 1 \end{aligned}$
0000 0054н	-		TMCSR1 [R/W] H --000000 --000000		
0000 0058н	TMRLRA2 [R/W] H XXXXXXXX XXXXXXXX		TMR2 [R] H XXXXXXXX XXXXXXXX		16-bit reload timer ch. 2
0000 005CH	-		$\begin{aligned} & \hline \text { TMCSR2 [R/W] H } \\ & --000000--000000 \end{aligned}$		

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 0060н	$\begin{gathered} \hline \text { SCR0 } \\ {[R / W] B, H, W} \\ 0--00000 \end{gathered}$	$\begin{gathered} \hline \text { SMR0 }[R / W] \\ B, H, W \\ 000-0000 \end{gathered}$	$\begin{gathered} \hline \text { SSRO [R,R/W] } \\ B, H, W \\ 0-000011 \end{gathered}$	ESCRO [R/W] B,H,W -0000000	Multi-function
0000 0064н			$\begin{gathered} \hline \text { BGR10 [R/W] } \\ H, W \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { BGR00 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	ch. 0
0000 0068н	$\begin{gathered} \hline \text { SCR1 }[R / W] / \\ \text { IBCR1 } \\ {[R, R / W] B, H, W^{* 2}} \\ 0--00000 \end{gathered}$	$\begin{gathered} \text { SMR1 [R/W] } \\ \text { B,H,W } \\ 000-0000 \end{gathered}$	$\begin{gathered} \text { SSR1 [R,R/W] } \\ B, H, W \\ 0-000011 \end{gathered}$	$\begin{gathered} \text { ESCR1 [R/W]/ } \\ \text { IBSR1 } \\ {[R, R / W] B, H, W * 2} \\ -0000000 \end{gathered}$	Multi-function serial interface ch. 1
0000 006Сн	RDR1 [R]/ TDR1[W] B,H, ${ }^{*-----0} 00000000$		$\begin{gathered} \hline \text { BGR11 [R/W] } \\ H, W \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { BGR01 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	
0000 0070н	ISMK1 [------- ${ }^{\text {- }}$	$\begin{gathered} \text { ISBA1 [R/W] } \\ \mathrm{B}, \mathrm{H}^{* 2} \\ ------ \end{gathered}$	-		
0000 0074	$\begin{gathered} \text { SCR2 [R/W]/ } \\ \text { IBCR2 } \\ {[R, R / W] B, H, W * 2} \\ 0--00000 \end{gathered}$	$\begin{gathered} \text { SMR2 [R/W] } \\ \text { B,H,W } \\ 000-0000 \end{gathered}$	$\begin{gathered} \text { SSR2 [R,R/W] } \\ \text { B,H,W } \\ 0-000011 \end{gathered}$	$\begin{gathered} \text { ESCR2 }[\mathrm{R} / \mathrm{W}] / \\ \text { IBSR2 }[\mathrm{R}, \mathrm{R} / \mathrm{W}] \\ \mathrm{B}, \mathrm{H}, \mathrm{~W}^{* 2} \\ -0000000 \end{gathered}$	Multi-function serial interface ch. 2
0000 0078н			$\begin{gathered} \hline \text { BGR12 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { BGR02 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	
0000 007Сн	ISMK2 [R/W] B, $\mathrm{H}^{* 2}$ \qquad	$\begin{gathered} \text { ISBA2 [R/W] } \\ \substack{\mathrm{B}, \mathrm{H}^{\star 2} \\ ------} \end{gathered}$	-		
0000 0080н	$\begin{gathered} \hline \text { SCR3 }[R / W] / \\ \text { IBCR3 } \\ {[R, R / W] B, H, W^{* 2}} \\ 0--00000 \end{gathered}$	$\begin{gathered} \text { SMR3 [R/W] } \\ \text { B,H,W } \\ 000-0000 \end{gathered}$	$\begin{gathered} \text { SSR3 [R,R/W] } \\ B, H, W \\ 0-000011 \end{gathered}$	$\begin{gathered} \text { ESCR3 }[\mathrm{R} / \mathrm{W}] / \\ \text { IBSR3 }[\mathrm{R}, \mathrm{R} / \mathrm{W}] \\ \mathrm{B}, \mathrm{H}, \mathrm{~W}^{* 2} \\ -0000000 \end{gathered}$	Multi-function serial interface ch. 3
0000 0084н			$\begin{gathered} \text { BGR13 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { BGR03 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	
0000 0088н	ISMK3 [R/------ B, ${ }^{*}$	$\begin{gathered} \hline \text { ISBA3 [R/W] } \\ \text { B,------- } \end{gathered}$	-		

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 008Сн	$\begin{gathered} \text { SCR4 }[R / W] / \\ \text { IBCR4 } \\ {[R, R / W] B, H, W^{* 2}} \\ 0--00000 \end{gathered}$	$\begin{gathered} \text { SMR4 [R/W] } \\ \text { B,H,W } \\ 000-0000 \end{gathered}$	$\begin{gathered} \text { SSR4 [R,R/W] } \\ \text { B,H,W } \\ 0-000011 \end{gathered}$	$\begin{gathered} \text { ESCR4 }[\mathrm{R} / \mathrm{W}] / \\ \text { IBSR4 }[\mathrm{R}, \mathrm{R} / \mathrm{W}] \\ \mathrm{B}, \mathrm{H}, \mathrm{~W}^{* 2} \\ -0000000 \end{gathered}$	Multi-function serial interface ch. 4
0000 0090н	$\begin{gathered} \text { RDR4 [R] / TDR4 [W] B,H, W** }{ }_{-----0000000} 000000 \end{gathered}$		$\begin{gathered} \text { BGR14 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { BGR04 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	
0000 0094H	ISMK4 [R/W] B, $\mathrm{H}^{\star 2}$	$\begin{gathered} \text { ISBA4 [R/W] } \\ \substack{\mathrm{B}, \mathrm{H}^{* 2} \\ ------} \end{gathered}$	-		
0000 0098н	$\begin{gathered} \text { SCR5 [R/W]/ } \\ \text { IBCR5 } \\ {[R, \mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W}^{* 2}} \\ 0--00000 \end{gathered}$	$\begin{gathered} \text { SMR5 [R/W] } \\ \text { B,H,W } \\ 000-0000 \end{gathered}$	$\begin{gathered} \text { SSR5 [R,R/W] } \\ B, H, W \\ 0-000011 \end{gathered}$	$\begin{gathered} \text { ESCR5 }[\mathrm{R} / \mathrm{W}] / / \\ \text { IBSR5 }[R, R / W] \\ \mathrm{B}, \mathrm{H}, \mathrm{~W}^{* 2} \\ -000000 \end{gathered}$	Multi-function serial interface ch. 5
0000 009Сн			$\begin{gathered} \hline \text { BGR15 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { BGR05 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	
0000 00AOн	ISMK5 [R/W] B,----- ${ }^{\star 2}$	$\begin{gathered} \text { ISBA5 [R/W] } \\ \underset{--H^{* 2}}{ } \end{gathered}$	-		
0000 00A44	$\begin{gathered} \text { SCR6 [R/W]/ } \\ \text { IBCR6 }[R, R / W] \\ \text { B,H,W*2 } \\ 0--00000 \end{gathered}$	$\begin{gathered} \text { SMR6 [R/W] } \\ \text { B,H,W } \\ 000-0000 \end{gathered}$	$\begin{gathered} \text { SSR6 [R,R/W] } \\ B, H, W \\ 0-000011 \end{gathered}$	$\begin{gathered} \text { ESCR6 }[R / W] / \\ \text { IBSR6 } \\ {[R, R / W] B, H, W^{* 2}} \\ -0000000 \end{gathered}$	Multi-function serial interface ch. 6
0000 00A8н	RDR6 [R] / TDR6 [W] B,H,---- 000000000		$\begin{gathered} \hline \text { BGR16 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { BGR06 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	
0000 00ACH	ISMK6 [R/W] B, $\mathrm{H}^{\star 2}$	$\begin{gathered} \text { ISBA6 [R/W] } \\ \mathrm{B}, \mathrm{H}^{\star 2} \\ ------ \end{gathered}$	-		
0000 00B0н	$\begin{gathered} \text { SCR7 [R/W]/ } \\ \text { IBCR7 } \\ {[R, R / W] B, H, W^{* 2}} \\ 0--00000 \end{gathered}$	$\begin{gathered} \text { SMR7 [R/W] } \\ \text { B,H,W } \\ 000-0000 \end{gathered}$	$\begin{gathered} \text { SSR7 [R,R/W] } \\ \text { B,H,W } \\ 0-000011 \end{gathered}$	$\begin{aligned} & \text { ESCR7 [R/W]/ } \\ & \text { IBSR7 [R,R/W] } \\ & \text { B,H,W*2 } \\ & -0000000 \end{aligned}$	Multi-function serial interface ch. 7
0000 00B4н	RDR7 [R] / TDR7 [W] B,H,---- 000000000		$\begin{gathered} \hline \text { BGR17 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { BGR07 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	
0000 00B8н	ISMK7 [R/W] B, $\mathrm{H}^{\star 2}$	$\begin{gathered} \text { ISBA7 [R/W] } \\ \text { B,------- } \end{gathered}$	-		
0000 00BCH	-				Reserved

(Continued)

FUjilisu

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 00COH	$\begin{gathered} \hline \text { RDRM0 [R]/ } \\ \text { TDRM0 } \\ \text { [W] B,H,W } \\ 00000000 \end{gathered}$	RDRM1 [R]/ TDRM1 [W] B,H,W 00000000	RDRM2 [R]/ TDRM2 [W] B,H,W 00000000	RDRM3 [R]/ TDRM3 [W] B,H,W 00000000	Multi-function serial interface data register (mirror)
0000 00C4н	RDRM4 [R]/ TDRM4 [W] B,H,W 00000000	RDRM5 [R] / TDRM5 [W] B,H,W 00000000	RDRM6 [R] / TDRM6 [W] B,H,W 00000000	RDRM7 [R] / TDRM7 [W] B,H,W 00000000	
0000 00C8H	SSEL0123 [R/----00	-	$\underset{-----00}{\text { SSEL4567 [R/W] B }}$	-	Multi-function serial interface serial clock selection
0000 00CCH	-				Reserved
0000 00DOн	$\begin{gathered} \text { SCR8 }[R / W] / \\ \text { IBCR8 } \\ {[R, \mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W}^{* 2}} \\ 0--00000 \end{gathered}$	$\begin{gathered} \text { SMR8 [R/W] } \\ \text { B,H,W } \\ 000-0000 \end{gathered}$	$\begin{gathered} \text { SSR8 [R,R/W] } \\ B, H, W \\ 0-000011 \end{gathered}$	$\begin{gathered} \text { ESCR8 [R/W]/ } \\ \text { IBSR8 } \\ {[R, R / W] B, H, W^{\star 2}} \\ -0000000 \end{gathered}$	Multi-function serial interface ch. 8 (FIFO)
0000 00D4н	RDR8 [R] / TDR8 [W] B,H, W*1		BGR18 [R/W] H,W 00000000	$\begin{gathered} \text { BGR08 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	
0000 00D8н	ISMK8 [R/W] B, $\mathrm{H}^{* 2}$ \qquad	$\text { ISBA8 [R/W] B, } \mathrm{H}^{* 2}$	-		
0000 00DCH	$\begin{gathered} \text { FCR18 [R/W] } \\ \text { B,H,W } \\ ---00100 \end{gathered}$	$\begin{gathered} \text { FCR08 [R,R/W] } \\ \text { B,H,W } \\ -0000000 \end{gathered}$	$\begin{gathered} \text { FBYTE28 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { FBYTE18 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	
0000 00EOн	$\begin{gathered} \text { SCR9 }[\mathrm{R} / \mathrm{W}] / \\ \text { IBCR9 } \\ {[\mathrm{R}, \mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W}^{* 2}} \\ 0--00000 \end{gathered}$	$\begin{gathered} \text { SMR9 [R/W] } \\ \text { B,H,W } \\ 000-0000 \end{gathered}$	$\begin{gathered} \text { SSR9 [R,R/W] } \\ B, H, W \\ 0-000011 \end{gathered}$	$\begin{gathered} \hline \text { ESCR9 [R/W]/ } \\ \text { IBSR9 }[R, R / W] \\ B, H, W^{*} 2 \\ -0000000 \end{gathered}$	Multi-function serial interface ch. 9 (FIFO)
0000 00E4н	RDR9 [R] / TDR9 [W] B,H,W*1		$\begin{gathered} \text { BGR19 [R/W] H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { BGR09 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	
0000 00E8н	ISMK9 [R/W] B, $\mathrm{H}^{* 2}$	ISBA9 [R/W] B, $\mathrm{H}^{* 2}$	-		
0000 00ECH	$\begin{gathered} \text { FCR19 [R/W] } \\ \text { B,H,W } \\ ---00100 \end{gathered}$	$\begin{gathered} \text { FCR09 [R,R/W] } \\ \text { B,H,W } \\ -0000000 \end{gathered}$	$\begin{gathered} \text { FBYTE29 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { FBYTE19 [R/W] } \\ \text { B,H,W } \\ 000000000 \end{gathered}$	

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 00FOн	$\begin{gathered} \text { SCR10 }[\mathrm{R} / \mathrm{W}] / \\ \text { IBCR10 } \\ {[\mathrm{R}, \mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} * 2} \\ 0--00000 \end{gathered}$	$\begin{gathered} \text { SMR10 [R/W] } \\ \text { B,H,W } \\ 000-0000 \end{gathered}$	$\begin{gathered} \text { SSR10 [R,R/W] } \\ B, H, W \\ 0-000011 \end{gathered}$	$\begin{gathered} \hline \text { ESCR10 }[\mathrm{R} / \mathrm{W}] / \\ \text { IBSR10 } \\ {[\mathrm{R}, \mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} * 2} \\ -0000000 \end{gathered}$	Multi-function serial interface ch. 10 (FIFO)
0000 00F4H	RDR10 [R] / TDR10 [W] B,H, W*1----00000000		$\begin{gathered} \text { BGR110 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { BGR010 [R/W] } \\ \text { H,W } \\ 00000000 \end{gathered}$	
0000 00F8н	$\begin{gathered} \text { ISMK10 [R/W] } \\ \mathrm{B}, \mathrm{H}^{* 2} \\ ------ \end{gathered}$	$\begin{gathered} \text { ISBA10 [R/W] } \\ \mathrm{B},-\mathrm{H}^{\star 2} \\ ------- \end{gathered}$	-		
0000 00FCH	$\begin{gathered} \hline \text { FCR110 [R/W] } \\ \text { B,H,W } \\ ---00100 \end{gathered}$	$\begin{gathered} \hline \text { FCR010 [R,R/W] } \\ \text { B,H,W } \\ -0000000 \end{gathered}$	$\begin{gathered} \hline \text { FBYTE210[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { FBYTE110 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	
0000 0100н	$\begin{gathered} \text { SCR11 [R/W] / } \\ \text { IBCR11 } \\ {[R, R / W] B, H, W^{* 2}} \\ 0--00000 \end{gathered}$	$\begin{gathered} \text { SMR11 [R/W] } \\ \text { B,H,W } \\ 000-0000 \end{gathered}$	$\begin{gathered} \text { SSR11 [R,R/W] } \\ \text { B,H,W } \\ 0-000011 \end{gathered}$	$\begin{gathered} \text { ESCR11[R/W]/ } \\ \text { IBSR11 } \\ {[R, R / W] B, H, W^{* 2}} \\ -0000000 \end{gathered}$	Multi-function serial interface ch. 11 (FIFO)
0000 0104世	RDR11[R] / TDR11[W] B,H, W*1		$\begin{gathered} \text { BGR111 [R/W] } \\ H, W \\ 00000000 \end{gathered}$	$\begin{gathered} \text { BGR011 [R/W] } \\ H, W \\ 00000000 \end{gathered}$	
0000 0108н	ISMK11 [R/W] $\mathrm{B}, \mathrm{H}^{* 2}$ --------	$\begin{gathered} \hline \text { ISBA11 [R/W] } \\ \mathrm{B},-\mathrm{H}^{* 2} \\ ------ \end{gathered}$	-		
0000 010Сн	$\begin{gathered} \text { FCR111 [R/W] } \\ \text { B,H,W } \\ ---00100 \end{gathered}$	$\begin{gathered} \hline \text { FCR011 [R,R/W] } \\ \text { B,H,W } \\ -0000000 \end{gathered}$	$\begin{gathered} \hline \text { FBYTE211 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { FBYTE111[R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	
0000 0110н	$\begin{gathered} \hline \text { EIRR1 [R/W] } \\ B, H, W \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ENIR1 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	ELVR1 [R/W] B,H,W 0000000000000000		External interrupt 8 to 15
0000 0114H	$\begin{gathered} \hline \text { EIRR2 }[\mathrm{R} / \mathrm{W}] \\ \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { ENIR2 }[\mathrm{R} / \mathrm{W}] \\ \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ 00000000 \end{gathered}$	ELVR2 [R/W] B,H,W 0000000000000000		External interrupt 16 to 23
0000 0118н	$\begin{gathered} \text { EIRR3 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ENIR3 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	ELVR3 [R/W] B,H,W 0000000000000000		External interrupt 24 to 31
0000 011CH	-				Reserved

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 0120н	ADCRO $[R / W] B, H$ $000-0000$	$\begin{gathered} \hline \text { ADSRO }[R, R / W] \\ B, H \\ 00---000 \end{gathered}$	-		A/D converter unit 0
0000 0124H	$\begin{gathered} \text { SCCRO }[R, R / W] B, H \\ 1000-000 \end{gathered}$	$\begin{gathered} \hline \text { SFNSO [R/W] B,H } \\ ---0000 \end{gathered}$	$\begin{gathered} \text { SCFDO }[R] B, H \\ X X X X X X X X X-X X X X \end{gathered}$		
0000 0128	-		$\begin{gathered} \text { SCIS10 [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SCIS00 [R/W] B,H } \\ 00000000 \end{gathered}$	
0000 012Cн	$\begin{gathered} \text { PCCRO }[R, R / W] B, H \\ 1000-000 \end{gathered}$	$\begin{gathered} \text { PFNSO[R/W] B,H } \\ ----00 \end{gathered}$	$\begin{gathered} \text { PCFDO[R]B,H } \\ X X X X X X X X X X X X X \end{gathered}$		
0000 0130н	PCISO [R/W] B 00000000	-	$\begin{gathered} \text { CMPDO [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { CMPCRO [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$	
0000 0134	-		$\begin{gathered} \hline \text { ADSS10 }[\mathrm{R} / \mathrm{W}] \\ \text { B, H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ADSS00 }[R / W] B, H \\ 00000000 \end{gathered}$	
0000 0138	$\begin{gathered} \text { ADST00 [R/W] B,H } \\ 00100000 \end{gathered}$	$\begin{array}{\|c} \hline \text { ADST10 [R/W] B,H } \\ 00100000 \end{array}$	$\begin{gathered} \text { ADCTO [R/W] B } \\ ---111 \end{gathered}$	-	
0000 013CH	-				Reserved
0000 0140н	$\begin{gathered} \text { BTOTMR [R] H } \\ 0000000000000000 \end{gathered}$		BTOTMCR [R/W] B,H -0000000 00000000		Base timer ch. 0
0000 0144H	-	$\begin{gathered} \text { BTOSTC [R/W] B } \\ 0000-000 \end{gathered}$		-	
0000 0148н	BTOPCSR / BTOPRLL [R/W] H XXXXXXXX XXXXXXXX		BTOPDUT / BTOPRLH / BTODTBF [R/W] H XXXXXXXX XXXXXXXX		
0000 014CH	-				
0000 0150н	BT1TMR [R] H0000000000000000		$\begin{aligned} & \hline \text { BT1TMC } \\ & -000000 \end{aligned}$	$\begin{aligned} & \hline \mathrm{R}[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ & 000000000 \end{aligned}$	Base timer ch. 1
0000 0154H	-	$\begin{gathered} \text { BT1STC [R/W] B } \\ 0000-000 \end{gathered}$		-	
0000 0158н	BT1PCSR / BT1PRLL [R/W] H XXXXXXXX XXXXXXXX		BT1PDUT / BT1PRLH / BT1DTBF [R/W] H XXXXXXXX XXXXXXXX		
0000 015CH	-				

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 0160н	BT2TMR [R] H 0000000000000000		BT2TMCR [R/W] B,H -000000000000000		Base timer ch. 2
0000 0164н	-	$\begin{gathered} \hline \text { BT2STC }[R / W] \text { B } \\ 0000-000 \end{gathered}$			
0000 0168н	BT2PCSR / BT2PRLL [R/W] H XXXXXXXX XXXXXXXX		BT2PDUT / BT2PRLH / BT2DTBF [R/W] H XXXXXXXX XXXXXXXX		
0000 016CH	-				
0000 0170н	$\begin{gathered} \text { BT3TMR [R] H } \\ 0000000000000000 \end{gathered}$		BT3TMCR [R/W] B,H-000000000000000		Base timer ch. 3
0000 0174н	-	BT3STC [R/W] B $0000-000$			
0000 0178н	BT3PCSR / BT3PRLL [R/W] H XXXXXXXX XXXXXXXX		BT3PDUT / BT3PRLH / BT3DTBF [R/W] H XXXXXXXX XXXXXXXX		
0000 017С ${ }_{\text {H }}$	BTSEL0123 [R/W] B 00000000	-			
0000 0180н	$\begin{gathered} \hline \text { DACRO }[\mathrm{R} / \mathrm{W}] \\ \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ -----0 \end{gathered}$	$\begin{gathered} \hline \text { DADRO [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { DACR1 [R/W] } \\ \text { B,H,W } \\ -----0 \end{gathered}$	$\begin{gathered} \hline \text { DADR1 [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	D/A converter
$\begin{gathered} 00000184_{H} \\ \text { to } \\ 000018 C_{H} \end{gathered}$	-				
$\begin{aligned} & 0000 \text { 0190н } \\ & \text { to } \\ & 0000 \text { 01А8 } \end{aligned}$	-				Reserved
0000 01ACH	ADCHE [R/W] B,H,W-11111111111111111111111111111				A/D channel enable
0000 01B0н	$\begin{gathered} \text { IRPROH }[R] B \\ 000----- \end{gathered}$	-	$\begin{aligned} & \text { IRPR1H [R] B,H } \\ & 000-000- \end{aligned}$	$\begin{gathered} \text { IRPR1L [R] B,H } \\ 000-000- \end{gathered}$	Interrupt request batch read function
0000 01B4н	$\begin{gathered} \text { IRPR2H }[R] B, H, W \\ 0000---- \end{gathered}$	$\begin{array}{\|c\|} \hline \text { IRPR2L }[R] B, H, W \\ 000----- \end{array}$	$\left\lvert\, \begin{gathered} \text { IRPR3H }[R] \text { B,H,W } \\ 0000---- \end{gathered}\right.$	$\begin{aligned} & \hline \text { IRPR3L }[R] \text { B,H,W } \\ & 00000--- \end{aligned}$	
0000 01B8н	$\begin{gathered} \text { IRPR4H }[R] B, H, W \\ 0000---- \end{gathered}$	$\begin{aligned} & \text { IRPR4L [R] B,H,W } \\ & 000000-\mathrm{H} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { IRPR5H [R] B,H,W } \\ 0000---- \end{array}$	$\begin{aligned} & \text { IRPR5L [R] B,H,W } \\ & 0000---- \end{aligned}$	
0000 01BCH	$\begin{aligned} & \text { IRPR6H [R] B,H,W } \\ & 0000--- \end{aligned}$	$\begin{gathered} \text { IRPR6L [R] B,H,W } \\ 0000---\mathrm{W} \end{gathered}$	$\begin{array}{\|c} \text { IRPR7H }[R] B, H, W \\ 0000---- \end{array}$	$\begin{aligned} & \text { IRPR7L [R] B,H,W } \\ & 0000 \text {---- } \end{aligned}$	

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 01C0н	RCRHO [W] H,W 00000000	$\begin{gathered} \hline \text { RCRLO [W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	UDCRHO [R] H,W 00000000	$\begin{gathered} \hline \text { UDCRLO }[R] \\ \text { B,H,W } \\ 00000000 \end{gathered}$	Up/down counter ch. 0
0000 01C4H	CCRO [R,R/W] B,H 00000000-0001000		-	$\begin{gathered} \text { CSR0 }[R, R / W] B \\ 00000000 \end{gathered}$	
0000 01С8	-				
0000 01СС	-				Reserved
0000 01D0н	RCRH1 [W] H,W 00000000	$\begin{aligned} & \text { RCRL1 [W] } \\ & \text { B,H,W } \\ & 00000000 \end{aligned}$	UDCRH1 [R] H,W 00000000	$\begin{aligned} & \text { UDCRL1 [R] } \\ & \text { B,H,W } \\ & 00000000 \end{aligned}$	Up/down counter ch. 1
0000 01D4н	CCR1 [R,R/W] B,H 00000000-0001000		-	$\begin{gathered} \hline \text { CSR1 }[R, R / W] B \\ 00000000 \end{gathered}$	
0000 01D8	-				
0000 01DCH	-				Reserved
0000 01E0н	$\begin{aligned} & \text { RCRH2 [W] H,W } \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { RCRL2 [W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	UDCRH2 [R]H,W 00000000	$\begin{aligned} & \text { UDCRL2 [R] } \\ & \text { B,H,W } \\ & 00000000 \\ & \hline \end{aligned}$	Up/down counterch. 2
0000 01E4н	CCR2 [R,R/W] B,H 00000000-0001000		-	$\begin{gathered} \hline \text { CSR2 }[R, R / W] B \\ 00000000 \end{gathered}$	
0000 01E8H	-				
0000 01ECH	-				Reserved
0000 01FOH	$\begin{gathered} \text { RCRH3 [W] H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { RCRL3 [W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	UDCRH3 [R] H,W 00000000	$\begin{gathered} \hline \text { UDCRL3 [R] } \\ \text { B,H,W } \\ 000000000 \end{gathered}$	Up/down counterch. 3
0000 01F4н	CCR3 [R,R/W] B,H 00000000-0001000		-	$\begin{gathered} \text { CSR3 }[R, R / W] B \\ 00000000 \end{gathered}$	
0000 01F8н	-				
0000 01FCH	-				Reserved
0000 0200н	CPCLRO [R/W] W111111111111111111111111111111				32-bit Free-run timer ch. 0
0000 0204н	TCDTO [R/W] W00000000000000000000000000000000				
0000 0208н	$\underset{0----00}{\text { TCCSHO }}$	$\begin{gathered} \hline \text { TCCSLO [R/W] } \\ \text { B,H } \\ -1-00000 \end{gathered}$			

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 020CH	IPCP0 [R] WXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0000 0210н	IPCP1 [R] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0000 0214н	IPCP2 [R] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				32-bit Input capture ch. 0 to ch. 3
0000 0218н	IPCP3 [R] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0000 021CH	-	$\begin{gathered} \hline \text { ICS01 [R/W] B } \\ 00000000 \end{gathered}$	-	$\begin{gathered} \hline \text { ICS23 [R/W] B } \\ 00000000 \end{gathered}$	
0000 0220н	IPCP4 [R] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0000 0224н	IPCP5 [R] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0000 0228н	IPCP6 [R] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				32-bit Input capture ch. 4 to ch. 7
0000 022C	IPCP7 [R] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0000 0230н	-	$\begin{gathered} \hline \text { ICS45 [R/W] B } \\ 00000000 \end{gathered}$	-	$\begin{aligned} & \hline \text { ICS67 [R/W] B } \\ & 00000000 \end{aligned}$	
0000 0234н	OCCPO [R/W] W00000000000000000000000000000000				
0000 0238	OCCP1 [R/W] W00000000000000000000000000000000				
0000 023C	OCCP2 [R/W] W00000000000000000000000000000000				32-bit Output compare
0000 0240н	OCCP3 [R/W] W00000000000000000000000000000000				ch. 0 to ch. 3
0000 0244н	$\begin{gathered} \text { OCSH1 [R/W] } \\ \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ -----00 \end{gathered}$	$\begin{gathered} \text { OCSLO [R/W] } \\ \text { B,H,W } \\ 0000--00 \end{gathered}$	$\begin{gathered} \text { OCSH3 [R/W] } \\ \text { B,H,W } \\ ---0--00 \end{gathered}$	$\begin{gathered} \text { OCSL2 [R/W] } \\ \text { B,H,W } \\ 0000--00 \end{gathered}$	

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 0248H	OCCP4 [R/W] W0000000000000000000000000000000				32-bit Output compare ch. 4 to ch. 7
0000 024CH	OCCP5 [R/W] W00000000000000000000000000000000				
0000 0250н	OCCP6 [R/W] W00000000000000000000000000000000				
0000 0254н	OCCP7 [R/W] W00000000000000000000000000000000				
0000 0258н	$\begin{gathered} \hline \text { OCSH5 [R/W] } \\ \text { B,H,W } \\ -----00 \end{gathered}$	$\begin{gathered} \text { OCSL4 [R/W] } \\ \text { B,H,W } \\ 0000--00 \end{gathered}$	$\begin{gathered} \text { OCSH7 [R/W] } \\ \text { B,H,W } \\ ---0-00 \end{gathered}$	$\begin{gathered} \hline \text { OCSL6 [R/W] } \\ \text { B,H,W } \\ 0000--00 \end{gathered}$	
0000 025CH	FRTSEL $\underset{----00}{ }$		-		Free-run timer selector
0000 0260н	CPCLR1 [R/W] W111111111111111111111111111111				32-bit Free-run timer ch. 1
0000 0264н	TCDT1 [R/W] W00000000000000000000000000000000				
0000 0268н	$\begin{gathered} \text { TCCSH1 [R/W] B,H } \\ 0---00 \end{gathered}$	$\begin{gathered} \text { TCCSL1 [R/W] } \\ \text { B,H } \\ -1-00000 \end{gathered}$	-		
$\begin{gathered} 0000 \text { 026CH } \\ \text { to } \\ 0000 \stackrel{031 C_{H}}{ } \end{gathered}$	-				Reserved
0000 0320н	$\begin{aligned} & \text { FCTLR [R/W] H } \\ & -0-1011 \text {------- } \end{aligned}$		-	$\underset{\substack{\text { FSTR }----1}}{ }$	Flash memory control
$\begin{gathered} 0000 \text { 0324н } \\ \text { to } \\ 0000 \text { 0334н } \end{gathered}$	-				Reserved
0000 0338н	-		WREN [R/W] B,H 0000000000000000		Wild register
0000 033CH	-				
$\begin{gathered} 0000 \text { 0340н } \\ \text { to } \\ 0000 \stackrel{037 \mathrm{C}_{\mathrm{H}}}{ } \end{gathered}$	-				Reserved

(Continued)

MB91625 Series

(Continued)

MB91625 Series

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 0400н	DDR0 [R/W] B,H 00000000	$\begin{gathered} \hline \text { DDR1 [R/W] B,H } \\ 00000000 \end{gathered}$	DDR2 [R/W] B,H 00000000	$\begin{gathered} \hline \text { DDR3 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ 00000000 \end{gathered}$	Data direction register
0000 0404н	$\begin{gathered} \text { DDR4 [R/W] B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { DDR5 [R/W] B,H } \\ 00000000 \end{gathered}$	DDR6 [R/W] B,H 00000000	$\begin{gathered} \hline \text { DDR7[R/W] B,H } \\ 00000000 \end{gathered}$	
0000 0408н	DDR8 [R/W] B,H 00000000	$\underset{----000}{ }$	DDRA [R/W] B 00000000	-	
$\begin{aligned} & 0000 \text { to } 040 \mathrm{C}_{\mathrm{H}} \\ & 0000 \text { 0410н } \end{aligned}$	-				
0000 0414H	$\begin{gathered} \text { DDRK [----000 } \\ \hline \end{gathered}$	-			
$\begin{gathered} 0000 \text { 0418н } \\ \text { to } \\ 0000{ }^{041 C_{H}} \end{gathered}$	-				
0000 0420н	PCR0 [R/W] B,H 00000000	$\begin{gathered} \hline \text { PCR1 [R/W] B,H } \\ 00000000 \end{gathered}$	-		Pull-up control register
0000 0424н	-	PCR5 [R/W] B 00000000	$\begin{gathered} \text { PCR6 [R/W] B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PCR7[R/W] B,H } \\ 00000000 \end{gathered}$	
0000 0428н	PCR8 [R/W] B,H 00000000	$\underset{----000}{ }$	PCRA [R/W] B 00000000	-	
$\begin{gathered} 0000 \text { 042CH } \\ \text { to } \\ 0000430 \text { н } \end{gathered}$	-				
0000 0434н	PCRK [R/W] B -----0--	-			
$\begin{gathered} 0000 \text { to } \\ \text { to } \\ 0000{ }^{043 C_{H}} \end{gathered}$	-				

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 0440н	$\begin{gathered} \hline \text { ICR00 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR01 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR02 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR03 }[\mathrm{R}, \mathrm{R} / \mathrm{W}] \\ \text { B,H,W } \\ ---11111 \end{gathered}$	Interrupt control
0000 04444	$\begin{gathered} \hline \text { ICR04 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR05 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR06 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR07 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
0000 0448н	$\begin{gathered} \hline \text { ICR08 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR09 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR10 }[R, R / W] \\ B, H, W \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR11 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
0000 044CH	$\begin{gathered} \text { ICR12 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR13 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR14 }[R, R / W] \\ B, H, W \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR15 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
0000 0450н	$\begin{gathered} \hline \text { ICR16 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR17 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR18 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR19 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
0000 0454н	$\begin{gathered} \hline \text { ICR20 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR21 [R,R/W] } \\ \text { B,H,W } \\ --11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR22 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR23 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
0000 0458н	$\begin{gathered} \text { ICR24 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR25 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR26 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR27 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
0000 045CH	$\begin{gathered} \hline \text { ICR28 }[\mathrm{R}, \mathrm{R} / \mathrm{W}] \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR29 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR30 }[\mathrm{R}, \mathrm{R} / \mathrm{W}] \\ \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR31 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
0000 0460н	$\begin{gathered} \hline \text { ICR32 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR33 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR34 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR35 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
0000 0464н	$\begin{gathered} \hline \text { ICR36 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR37 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR38 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR39 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
0000 0468н	$\begin{gathered} \hline \text { ICR40 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR41 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR42 }[\mathrm{R}, \mathrm{R} / \mathrm{W}] \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR43 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
0000 046CH	$\begin{gathered} \hline \text { ICR44 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR45 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR46 [R,R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR47 [R,R/W] } \\ \text { B,H,W } \\ --11111 \end{gathered}$	
$\begin{aligned} & 0000 \text { 0470н } \\ & \text { to } \\ & 0000047 \text { C }_{H} \end{aligned}$	-				Reserved

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 0480н	$\underset{11-X---X^{\star 3}}{\operatorname{RSTRR}}[\mathrm{R}] \mathrm{B}, \mathrm{H}, \mathrm{~W}$	$\begin{gathered} \hline \text { RSTCR [R/W] } \\ \text { B,H,W } \\ 000----0 \end{gathered}$	$\begin{gathered} \hline \text { STBCR [R/W] } \\ B, H, W \\ 0000--11 \end{gathered}$	$\begin{gathered} \hline \text { SLPRR [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	Reset control/ Power consumption control
0000 0484н	-				
0000 0488н	DIVRO [R/W] B,H $000----$	-	DIVR2 [R/W] B $0011----$	-	Clock division control
0000 048CH	-				
0000 0490н	$\begin{gathered} \hline \text { IORR0 [R/W] } \\ B, H, W \\ -0000000 \end{gathered}$	$\begin{gathered} \hline \text { IORR1 [R/W] } \\ B, H, W \\ -0000000 \end{gathered}$	$\begin{gathered} \text { IORR2 [R/W] } \\ \text { B,H,W } \\ -0000000 \end{gathered}$	$\begin{gathered} \text { IORR3 [R/W] } \\ \text { B,H,W } \\ -0000000 \end{gathered}$	Peripheral DMA transmission re quest control
0000 04944	$\begin{gathered} \text { IORR4 }[R / W] \\ B, H, W \\ -0000000 \end{gathered}$	$\begin{gathered} \text { IORR5 [R/W] } \\ B, H, W \\ -0000000 \end{gathered}$	$\begin{gathered} \text { IORR6 [R/W] } \\ B, H, W \\ -0000000 \end{gathered}$	$\begin{gathered} \text { IORR7 [R/W] } \\ B, H, W \\ -0000000 \end{gathered}$	
$\begin{array}{\|c} \hline 0000 \text { 0498н } \\ \text { to } \\ 0000 \text { 049CH }^{2} \end{array}$	-				Reserved
0000 04AOH	$\begin{gathered} \text { PFR0 [R/W] B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PFR1 [R/W] B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PFR2 [R/W] B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PFR3 [R/W] B,H } \\ 00000000 \end{gathered}$	Port function register
0000 04A4н	$\begin{gathered} \hline \text { PFR4 [R/W] B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PFR5 [R/W] B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PFR6 [R/W] B,H } \\ 00-00-0- \end{gathered}$	$\begin{gathered} \hline \text { PFR7[R/W] B,H } \\ 00000000 \end{gathered}$	
0000 04A8н	PFR8 [R/W] B 00000000	-	PFRA [R/W] B $00-00000$	-	
$\begin{array}{\|c} \hline 00004 \mathrm{ACH} \\ \text { to } \\ 0000 \text { 04B4H } \end{array}$	-				

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 04B8н	$\begin{gathered} \hline \text { EPFRO [R/W] B,H } \\ --000000 \end{gathered}$	$\underset{\substack{\text { EPFR1 [R/W] B,H } \\-000000}}{ }$	$\begin{gathered} \text { EPFR2 [R/W] B,H } \\ --000000 \end{gathered}$	EPFR3 $[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}$ --000000	Extended port function register
0000 04BCH	$\begin{gathered} \text { EPFR4 }[R / W] B, H \\ 00000000 \end{gathered}$	$\begin{gathered} \text { EPFR5 }[R / W] B, H \\ 00000000 \end{gathered}$	$\begin{gathered} \text { EPFR6 [R/W] B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { EPFR7 [R/W] B,H } \\ ---00000 \end{gathered}$	
0000 04C0н	$\begin{gathered} \hline \text { EPFR8 [R/W] B,H } \\ --00000 \end{gathered}$	$\underset{---00000}{\text { EPFR9 }[R / W]} \mathrm{B}, \mathrm{H}$	EPFR10 [R/W] B,H ---00000	EPFR11 [R/W] B,H ---00000	
0000 04C4н	$\begin{gathered} \text { EPFR12 [R/W] B,H } \\ ---00000 \end{gathered}$	$\begin{gathered} \text { EPFR13 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ ---00000 \end{gathered}$	$\begin{gathered} \text { EPFR14 [R/W] B,H } \\ ---00000 \end{gathered}$	$\underset{---00000}{ }$	
0000 04C8н	$\begin{gathered} \text { EPFR16 [R/W] B,H } \\ ---00000 \end{gathered}$	$\begin{gathered} \text { EPFR17 [R/W] B,H } \\ ---00000 \end{gathered}$	EPFR18 [R/W] B,H 00000000	EPFR19 [R/W] B,H -0000001	
0000 04ССн	$\begin{gathered} \text { EPFR20 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ --000000 \end{gathered}$	$\begin{gathered} \text { EPFR21 [R/W] B,H } \\ --000000 \end{gathered}$	$\begin{gathered} \text { EPFR22 [R/W] B,H } \\ --000000 \end{gathered}$	$\underset{--000000}{\text { EPFR23 [R/W] B,H }}$	
0000 04D0н	$\underset{--00000}{\text { EPFR24 [R/W] B,H }}$	$\begin{gathered} \text { EPFR25 }[R / W] B, H \\ --000000 \end{gathered}$	$\begin{gathered} \text { EPFR26 [R/W] B,H } \\ --000000 \end{gathered}$	$\underset{--000000}{ } \mathrm{EPFR} 2 \mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}$	
0000 04D4н	$\begin{gathered} \text { EPFR28 [R/W] B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { EPFR29 [R/W] B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { EPFR30 [R/W] B,H } \\ ----0000 \end{gathered}$	$\begin{gathered} \text { EPFR31 [R/W] B,H } \\ -0000000 \end{gathered}$	
0000 04D8н	$\begin{gathered} \text { EPFR32 [R/W] B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { EPFR33 [R/W] B,H } \\ --000000 \end{gathered}$	$\begin{gathered} \hline \text { EPFR34 }[\mathrm{R} / \mathrm{W}] \mathrm{B} \\ -0000000 \end{gathered}$	-	
0000 04DCH	- -				
$\begin{gathered} 0000 \text { 04ЕОн } \\ \text { to } \\ 0000 \begin{array}{c} 04 E C H \end{array} \end{gathered}$	-				Reserved
0000 04FOH	$\begin{gathered} \hline \text { ICSELO [R/W] } \\ \text { B,H,W } \\ ----000 \end{gathered}$	$\begin{gathered} \text { ICSEL1 [R/W] } \\ \text { B,H,W } \\ ----000 \end{gathered}$	$\begin{gathered} \text { ICSEL2 [R/W] } \\ \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ ----000 \end{gathered}$	$\begin{gathered} \text { ICSEL3 [R/W] } \\ \text { B,-H,W } \\ ----000 \end{gathered}$	DMA start request clear select function
0000 04F4H	$\begin{gathered} \text { ICSEL4 [R/W] } \\ \text { B,H,W } \\ -----00 \end{gathered}$	$\begin{gathered} \text { ICSEL5 [R/W] } \\ \text { B,H,W } \\ ----000 \end{gathered}$	$\begin{gathered} \text { ICSEL6 [R/W] } \\ \text { B,-H,W } \\ ----00 \end{gathered}$	$\begin{gathered} \text { ICSEL7 [R/W] } \\ B,------0 \\ ---0 \end{gathered}$	
0000 04F8H	$\begin{gathered} \text { ICSEL8 [R/W] } \\ \text { B,-H,W } \\ ----00 \end{gathered}$	$\begin{gathered} \hline \text { ICSEL9 [R/W] } \\ \text { B,H,W } \\ ----000 \end{gathered}$	$\begin{gathered} \hline \text { ICSEL10 [R/W] } \\ \text { B,H,W } \\ ----0000 \end{gathered}$	$\begin{gathered} \hline \text { ICSEL11 [R/W] } \\ \text { B,H,W } \\ ----0000 \end{gathered}$	
0000 04FCH	$\begin{gathered} \hline \text { ICSEL12 [R/W] } \\ \text { B,H } \\ ---0000 \end{gathered}$	$\begin{gathered} \text { ICSEL13 [R/W] } \\ \text { B,-H } \\ ----0-0 \end{gathered}$	$\begin{gathered} \hline \text { ICSEL14 [R/W] } \\ \text { B } \\ ----00 \end{gathered}$	-	

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
$\begin{aligned} & 0000 \text { 0500н } \\ & \text { to } \\ & 0000 \stackrel{050 \mathrm{C}_{\mathrm{H}}}{ } \end{aligned}$	-				Reserved
0000 0510н	$\begin{gathered} \hline \text { CSELR [R/W] } \\ \text { B,H,W } \\ 001---00 \end{gathered}$	$\begin{gathered} \hline \text { CMONR [R] } \\ \text { B,H,W } \\ 001---00 \end{gathered}$	$\begin{gathered} \hline \text { MTMCR [R/W] } \\ \text { B,H,W } \\ 00001111 \end{gathered}$	$\begin{gathered} \hline \text { STMCR [R/W] } \\ B, H, W \\ 0000-111 \end{gathered}$	Clock generation/
0000 0514н	$\begin{aligned} & \hline \text { PLLCR [R/W] B,H } \\ & --00000011110000 \end{aligned}$		$\begin{gathered} \text { CSTBR [R/W] B } \\ -0000000 \end{gathered}$	-	Sub timer
0000 0518н	$\begin{aligned} & \hline \text { WCRD [R] B,H } \\ & --000000 \end{aligned}$	$\begin{gathered} \text { WCRL [R/W] B,H } \\ --000000 \end{gathered}$	$\begin{gathered} \text { WCCR [R,R/W] B } \\ 00--0000 \end{gathered}$	-	Clock counter
$\begin{gathered} 00000^{051 C_{H}} \\ \text { to } \\ 0000 \text { 0BFCH } \end{gathered}$	-				Reserved
0000 0СС0~	$\begin{gathered} \text { DCCR0 [R/W] W } \\ 0----000--0000000000-000000 \end{gathered}$				DMAC
0000 0C04H			DTCRO [R/W] H0000000000000000		
0000 0С08н	DSARO [R/W] WXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0000 0С0Сн	DDAR0 [R/W] WXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0000 0C10н	$\begin{gathered} \hline \text { DCCR1 [R/W] W } \\ 0----000--0000000000-000000 \end{gathered}$				
0000 OC14	$\begin{gathered} \hline \text { DCSR1 } \\ 0------1 \end{gathered}$	2,R/W] H	$\begin{array}{r} \hline \text { DTCR1 } \\ 00000000 \end{array}$	R/W] H 0000000	
0000 OC18 ${ }^{\text {H }}$	XXX	$\begin{array}{r} \text { DSAR1 } \\ \mathrm{XXXX} \mathrm{XXXXXXX} \end{array}$	R/W] W $X X X X X X X X ~ X X X X X$		
0000 0С1С		$\begin{array}{r} \text { DDAR1 } \\ \mathrm{XXXX} \mathrm{XXXXXXXX} \end{array}$	$\begin{aligned} & \text { R/W] W } \\ & \text { XXXXXXXX XXXX } \end{aligned}$		
0000 0С20н		$\begin{array}{r} \text { DCCR2 } \\ 0----000--0000 \end{array}$	$\begin{aligned} & \text { R/W] W } \\ & 10000000-000000 \end{aligned}$		
0000 OC24H	$\begin{array}{r} \text { DCSR2 } \\ 0------1 \end{array}$	Q,R/W] H	$\begin{gathered} \text { DTCR2 } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { Z/W] H } \\ & 10000000 \end{aligned}$	
0000 0C28 ${ }^{\text {H }}$	DSAR2 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0000 0С2Сн	DDAR2 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0000 0С30н	$\begin{gathered} \hline \text { DCCR3 [R/W] W } \\ 0----000--0000000000-000000 \end{gathered}$				
0000 0C34	$\begin{gathered} \text { DCSR3 [R,R/W] H } \\ 0---------000 \end{gathered}$		DTCR3 [R/W] H0000000000000000		

(Continued)
FUjITSU

MB91625 Series

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 0DF8н					DMAC
$\begin{gathered} 0000 \text { ODFCH } \\ \text { to } \\ 0000 \begin{array}{c} 0 \mathrm{~F} 3 \mathrm{C}_{\mathrm{H}} \end{array} \end{gathered}$	-				Reserved
0000 0F40н	$\begin{gathered} \text { BT4TMR [R] H } \\ 0000000000000000 \end{gathered}$		BT4TMCR [R/W] B,H -0000000 00000000		Base timer ch. 4
0000 0F44н	-	$\begin{gathered} \text { BT4STC [R/W] B } \\ 0000-000 \end{gathered}$			
0000 0F48н	BT4PCSR / BT4PRLL [R/W] H XXXXXXXX XXXXXXXX		BT4PDUT / BT4PRLH / BT4DTBF [R/W] H XXXXXXXX XXXXXXXX		
0000 0F4CH	-				
0000 0F50н	$\begin{gathered} \text { BT5TMR [R] H } \\ 0000000000000000 \end{gathered}$				Base timer ch. 5
0000 0F54н	-	BT5STC [R/W] B $0000-000$			
0000 0F58н	BT5PCSR / BT5PRLL [R/W] H XXXXXXXX XXXXXXXX		BT5PDUT / BT5PRLH / BT5DTBF [R/W] H XXXXXXXX XXXXXXXX		
0000 0F5CH	-				
0000 0F60н	$\begin{gathered} \text { BT6TMR [R] H } \\ 0000000000000000 \end{gathered}$				Base timer ch. 6
0000 0F64H	-	BT6STC [R/W] B $0000-000$			
0000 0F68н	BT6PCSR / BT6PRLL [R/W] H XXXXXXXX XXXXXXXX		BT6PDUT / BT6PRLH / BT6DTBF [R/W] H XXXXXXXX XXXXXXXX		
0000 0F6CH	-				
0000 0F70н	$\begin{gathered} \text { BT7TMR [R] H } \\ 0000000000000000 \end{gathered}$		BT7TMCR [R/W] B,H -0000000 00000000		Base timer ch. 7
0000 0F74H	-	$\begin{gathered} \text { BT7STC [R/W] B } \\ 0000-000 \end{gathered}$			
0000 0F78н	BT7PCSR / BT7PRLL [R/W] H XXXXXXXX XXXXXXXX		BT7PDUT / BT7PRLH / BT7DTBF [R/W] H XXXXXXXX XXXXXXXX		
0000 0F7CH	$\begin{gathered} \text { BTSEL4567 } \\ {[R / W] \text { B }} \\ 00000000 \end{gathered}$		-		

(Continued)

MB91625 Series

Address	Register				Block
	+0	+1	+2	+3	
0000 0F80н	BT8TMR [R] H 0000000000000000		$\begin{aligned} & \hline \text { BT8TMCR [R/W] B,H } \\ & -000000000000000 \end{aligned}$		Base timer ch. 8
0000 0F84н	-	BT8STC [R/W] B $0000-000$			
0000 0F88н	BT8PCSR / BT8PRLL [R/W] H XXXXXXXX XXXXXXXX		BT8PDUT / BT8PRLH / BT8DTBF [R/W] H XXXXXXXX XXXXXXXX		
0000 0F8CH	-				
0000 0F90н	BT9TMR [R] H 0000000000000000				Base timer ch. 9
0000 0F94н	-	BT9STC [R/W] B $0000-000$			
0000 0F98н	BT9PCSR / BT9PRLL [R/W] H XXXXXXXX XXXXXXXX		BT9PDUT / BT9PRLH / BT9DTBF [R/W] H xxxxxxxx xxxxxxxx		
0000 OF9CH	-				
0000 OFAOH	BTATMR [R] H 0000000000000000				Base timer ch. 10
0000 0FA4	-	BTASTC [R/W] B $0000-000$			
0000 0FA8н	BTAPCSR / BTAPRLL [R/W] H XXXXXXXX XXXXXXXX		BTAPDUT / BTAPRLH / BTADTBF [R/W] H XXXXXXXX XXXXXXXX		
0000 OFACH	-				
0000 0FB0н	BTBTMR [R] H 0000000000000000		BTBTMCR [R/W] B,H -0000000 00000000		Base timer ch. 11
0000 0FB4н	-	BTBSTC [R/W] B $0000-000$			
0000 0FB8	BTBPCSR / BTBPRLL [R/W] H XXXXXXXX XXXXXXXX		BTBPDUT / BTBPRLH / BTBDTBF [R/W] H xxxxxxxx xxxxxxxx		
0000 OFBCH	BTSEL89AB [R/W] B 00000000		-		

(Continued)

MB91625 Series

(Continued)

Address	Register			Block
	+0	+1	+2	
0000 OFCOH	BTCTMR [R] H0000000000000000		BTCTMCR [R/W] B,H -000000000000000	Base timer ch. 12
0000 OFC4H	-	$\begin{gathered} \text { BTCSTC [R/W] B } \\ 0000-000 \end{gathered}$		
0000 0FC8	BTCPCSR / BTCPRLL [R/W] H XXXXXXXX XXXXXXXX		BTCPDUT / BTCPRLH / BTCDTBF [R/W] H XXXXXXXX XXXXXXXX	
0000 OFCCH	-			
0000 OFDOH	BTDTMR [R] H0000000000000000			Base timer ch. 13
0000 0FD4	-	$\begin{gathered} \text { BTDSTC [R/W] B } \\ 0000-000 \end{gathered}$		
0000 0FD8н	BTDPCSR / BTDPRLL [R/W] H XXXXXXXX XXXXXXXX		BTDPDUT / BTDPRLH / BTDDTBF [R/W] H XXXXXXXX XXXXXXXX	
0000 OFDCH	-			
0000 OFEOH	$\begin{gathered} \text { BTETMR [R] H } \\ 0000000000000000 \end{gathered}$			Base timer ch. 14
0000 OFE4H	-	$\begin{gathered} \text { BTESTC [R/W] B } \\ 0000-000 \end{gathered}$		
0000 0FE8 ${ }^{\text {H }}$	BTEPCSR / BTEPRLL [R/W] H XXXXXXXX XXXXXXXX		BTEPDUT / BTEPRLH / BTEDTBF [R/W] H XXXXXXXX XXXXXXXX	
0000 OFECH	-			
0000 OFFOH	BTFTMR [R] H0000000000000000			Base timer ch. 15
0000 OFF4H	-	$\begin{gathered} \text { BTFSTC [R/W] B } \\ 0000-000 \end{gathered}$		
0000 0FF8н	BTFPCSR / BTFPRLL [R/W] H XXXXXXXX XXXXXXXX		BTFPDUT / BTFPRLH / BTFDTBF [R/W] H XXXXXXXX XXXXXXXX	
0000 OFFCH	$\begin{gathered} \text { BTSELCDEF } \\ {[R / W] \text { B }} \\ 00000000 \end{gathered}$	-		
$\begin{gathered} 00001000 \text { н } \\ \text { to } \\ 000 \text { FFFCH } \end{gathered}$		-		Reserved

*1 : Byte access is available only when accessing the lower 8 bits within 9 bits.
*2 : The register of $\mathrm{I}^{2} \mathrm{C}$ can not be read immediate after reset.
*3 : Value just after reset by INIT pin.
Do not access the reserved areas.

MB91625 Series

VECTOR TABLE

Interrupt source (Peripheral resource)	Interrupt number		Interrupt level setting register	Offset	Address of TBR default
	Decimal	Hexadecimal			
Reset	0	00	-	3FCH	000F FFFFCH
System reserved	1	01	-	3F8H	000F FFFF8
System reserved	2	02	-	3F4H	000F FFFF4
System reserved	3	03	-	3F0H	000F FFFFOH
System reserved	4	04	-	3ЕСн	000F FFECH
System reserved	5	05	-	3Е8н	000F FFE8н
System reserved	6	06	-	3E4н	000F FFE4н
System reserved	7	07	-	3E0н	000F FFE0н
System reserved	8	08	-	3DCH	000F FFDCH
INTE instruction	9	09	-	3D8н	000F FFD8н
System reserved	10	0A	-	3D4н	000F FFD4н
System reserved	11	OB	-	3D0н	000F FFD0н
Step trace trap	12	OC	-	3ССн	000F FFCCH
System reserved	13	OD	-	3C8H	000F FFC8\%
Undefined instruction exception	14	OE	-	3C4H	000F FFCC4
-	15	OF	15(FH) fixed	3С0н	000F FFCOH
External interrupt request ch. 0 to ch. 7	16	10	ICR00	3ВСн	000F FFBCH
External interrupt request ch. 8 to ch. 15	17	11	ICR01	3В8н	000F FFB8н
External interrupt request ch. 16 to ch. 23	18	12	ICR02	3В4н	000F FFB4н
External interrupt request ch. 24 to ch. 31	19	13	ICR03	3B0н	000F FFB0н
16-bit reload timer ch. 0 to ch. 2	20	14	ICR04	3 ACH	000F FFACH
Reception interrupt request of UART/CSIO ch. 0	21	15	ICR05	3A8H	000F FFA8н
Transmission interrupt request of UART/CSIO ch. 0 Transmission bus idle interrupt request of UART/CSIO ch. 0	22	16	ICR06	3A4н	000F FFA4н
Reception interrupt request of UART/CSIO/ I2 ${ }^{2}$ ch. 1	23	17	ICR07	3A0н	000F FFA0н
Transmission interrupt request of UART/CSIO/ I ${ }^{2} \mathrm{C}$ ch. 1 Transmission bus idle interrupt request of UART/CSIO ch. 1	24	18	ICR08	39C	000F FF9Cн
Status interrupt request of $\mathrm{I}^{2} \mathrm{C}$ ch. 1	25	19	ICR09	398H	000F FF98 ${ }^{\text {¢ }}$
Reception interrupt request of UART/CSIO// ${ }^{2} \mathrm{C}$ ch. 2	26	1A	ICR10	394 ${ }^{\text {H }}$	000F FF94 ${ }^{\text {¢ }}$
Transmission interrupt request of UART/CSIO/I²C ch.2 Transmission bus idle interrupt request of UART/CSIO ch. 2	27	1B	ICR11	390н	000F FF90н

(Continued)

MB91625 Series

Interrupt source (Peripheral resource)	Interrupt number		Interrupt level setting register	Offset	Address of TBR default
	Decimal	Hexadecimal			
Status interrupt request of ${ }^{2} \mathrm{C}$ ch. 2	28	1C	ICR12	38CH	000F FF8CH
Reception interrupt request of UART/CSIO/I² ${ }^{\text {C }}$ ch. 3	29	1D	ICR13	388H	000F FF88н
Transmission interrupt request of UART/CSIO//² C ch. 3 Transmission bus idle interrupt request of UART/ CSIO ch. 3 Status interrupt request of $I^{2} \mathrm{C}$ ch. 3	30	1E	ICR14	384H	000F FF84н
Reception interrupt request of UART/CSIO/I² ${ }^{\text {C }}$ ch. 4	31	1F	ICR15	380 ${ }^{\text {H}}$	000F FF80н
Transmission interrupt request of UART/CSIO//²C ch. 4 Transmission bus idle interrupt request of UART/ CSIO ch. 4 Status interrupt request of $\mathrm{I}^{2} \mathrm{C}$ ch. 4	32	20	ICR16	$37 \mathrm{CH}_{4}$	000F FF7CH
Reception interrupt request of UART/CSIO/I ${ }^{2} \mathrm{C}$ ch. 5	33	21	ICR17	378H	000F FF78H
Transmission interrupt request of UART/CSIO/I² C ch. 5 Transmission bus idle interrupt request of UART/ CSIO ch. 5 Status interrupt request of $\mathrm{I}^{2} \mathrm{C}$ ch. 5	34	22	ICR18	374H	000F FF74H
Reception interrupt request of UART/CSIO/ ${ }^{2} \mathrm{C}$ ch. 6	35	23	ICR19	370 ${ }^{\text {H}}$	000F FF70н
Transmission interrupt request of UART/CSIO// ${ }^{2} \mathrm{C}$ ch. 6 Transmission bus idle interrupt request of UART/ CSIO ch. 6 Status interrupt request of $\mathrm{I}^{2} \mathrm{C}$ ch. 6	36	24	ICR20	$36 \mathrm{CH}_{\mathrm{H}}$	000F FF6CH
Reception interrupt request of UART/CSIO/I² C ch. 7 32-bit input capture ch. 4 to ch. 7	37	25	ICR21	368H	000F FF68н
Transmission interrupt request of UART/CSIO//² C ch. 7 Transmission bus idle interrupt request of UART/ CSIO ch. 7 Status interrupt request of ${ }^{2} \mathrm{C}$ ch. 7 32-bit output compare ch. 4 to ch. 7	38	26	ICR22	364H	000F FF64H
Reception interrupt request of UART/CSIO/I2 C ch. 8 to ch. 11 Transmission interrupt request of UART/CSIO/ ${ }^{2} \mathrm{C}$ ch. 8 to ch. 11 Transmission bus idle interrupt request of UART/CSIO ch. 8 to ch. 11 Transmission FIFO interrupt request UART/CSIO/I² Ch .8 to ch. 11 Status interrupt request of $I^{2} \mathrm{C}$ ch. 8 to ch. 11	39	27	ICR23	360 ${ }^{\text {H}}$	000F FF60н
16-bit up/down counter ch. 0 to ch. 3	40	28	ICR24	$35 \mathrm{CH}_{\mathrm{H}}$	000F FF5CH
Main timer/Sub timer/Watch counter	41	29	ICR25	358H	000F FF58н
Unit 0 of 10 -bit A/D converter - Scan conversion interrupt request - Priority conversion interrupt request - FIFO overrun interrupt request - Conversion result compare interrupt request	42	2 A	ICR26	354	000F FF54н
32-bit free run timer ch.0, ch. 1	43	2B	ICR27	350H	000F FF50h
32-bit input capture ch. 0 to ch. 3	44	2C	ICR28	34 CH	000F FF4CH
32-bit output compare ch. 0 to ch. 3	45	2D	ICR29	348н	000F FF48н

(Continued)

MB91625 Series

(Continued)

Interrupt source (Peripheral resource)	Interrupt number		Interrupt level setting register	Offset	Address of TBR default
	Decimal	Hexadecimal			
Base timer ch. 0	46	2E	ICR30	344	000F FF44
Base timer ch. 1	47	2F	ICR31	340н	000F FF40н
Base timer ch. 2	48	30	ICR32	33С	000F FF3CH
Base timer ch. 3	49	31	ICR33	338н	000F FF38
Base timer ch.4, ch. 5	50	32	ICR34	334н	000F FF34
Base timer ch.6, ch. 7	51	33	ICR35	330н	000F FF30н
Base timer ch.8, ch. 9	52	34	ICR36	32 CH	000F FF2CH
Base timer ch.10, ch. 11	53	35	ICR37	328н	000F FF28
Base timer ch. 12	54	36	ICR38	324н	000F FF24H
Base timer ch. 13	55	37	ICR39	320н	000F FF20н
Base timer ch.14, ch. 15	56	38	ICR40	$31 \mathrm{CH}^{\text {¢ }}$	000F FF1CH
DMA controller (DMAC) ch. 0	57	39	ICR41	318H	000F FF18
DMA controller (DMAC) ch. 1	58	3A	ICR42	314н	000F FF14H
DMA controller (DMAC) ch. 2	59	3B	ICR43	310н	000F FF10н
DMA controller (DMAC) ch. 3	60	3C	ICR44	30 CH	000F FFOCH
DMA controller (DMAC) ch. 4 to ch. 7	61	3D	ICR45	308н	000F FF08н
System reserved	62	3E	ICR46	304н	000F FF04H
Delay interrupt	63	3 F	ICR47	300н	000F FFOOH
System reserved (Used by REALOS)	64	40	-	2 FCH	000F FEFCH
System reserved (Used by REALOS)	65	41	-	2F8H	000F FEF8H
Used by INT instruction	$\begin{array}{r} 66 \\ \text { to } \\ 255 \end{array}$	$\begin{array}{r} 42 \\ \text { to } \\ \text { FF } \end{array}$	-	$\begin{gathered} 2 F 4 \mathrm{H} \\ \text { to } \\ 00 \mathrm{O}_{\mathrm{H}} \end{gathered}$	$\begin{aligned} & \text { O00F FEF4н } \\ & \text { to } \\ & 000 \mathrm{FCO} \end{aligned}$

MB91625 Series

PIN STATUS IN EACH CPU STATE

The terms used for pin status have the following meanings.

- When INIT = "L"

This is the period when the INIT pin is the "L" level.

- When $\overline{\mathrm{N} I \mathrm{~T}}=$ " H "

The status immediately after the INIT pin changes from the " L " level to the " H " level.

- SLVL1

This bit is a standby level setting bit in the standby mode control register (STBCR).

- Input enabled

Indicates that the input function can be used.

- Input disabled

Indicates that the input function cannot be used.

- Output Hi-Z

Indicates that the output drive transistor is disabled and the pin is put in the $\mathrm{Hi}-\mathrm{Z}$ state.

- Maintain previous state

Maintains the state that was being output immediately prior to entering the current mode.
If a built-in peripheral function is operating, the output follows the peripheral function.
If the pin is being used as a port, that output is maintained.

- Internal input fixed at " 0 "

The input gate connected to the pin is disconnected from the external input and internally connected to " 0 ".

- Input enabled when interrupt function selected and enabled

Inputs are allowed only when the pin is configured as an external interrupt request input pin and the external interrupt request is enabled.

MB91625 Series

- List of pin status

Pin name	Function name	Initial Value		Sleep Mode	Standby Mode	
		$\begin{gathered} \hline \text { INIT }=\text { "L" } \\ \text { Period } \end{gathered}$	$\begin{gathered} \text { INIT }=\text { "H" } \\ \text { Period } \end{gathered}$		SLVL1 $=0$	SLVL1 = 1
INIT	INIT	-	-	Input enabled	Input enabled	Input enabled
X0	X0	Input enabled	Input enabled		Hi-Z or Input enabled	Hi-Z or Input enabled
X1	X1	Input enabled	Input enabled		"H" output or Input enabled	"H" output or Input enabled
X0A	XOA (When $\overline{\text { INIT }}$ input, see PK1. When port selected, input disabled)	Input disabled	Input disabled		Hi-Z or Input enabled	Hi-Z or Input enabled
X1A	X1A (When INIT input, see PK0. When port selected, input disabled)	Input disabled	Input disabled		"H" output or Input enabled	"H" output or Input enabled
MD0	MD0	Input enabled	Input enabled		Input	Inp
MD1	MD1	Input enabled	Input enabled		enabled	enabled
P00	P00/TIOA0/SOUTO_1/INO	Output Hi-Z	Output Hi-Z/Input enabled	Last state maintained	Last state maintained	Output Hi-Z/ Internal input " 0 " fixed
P01	P01/TIOB0/SIN0_1/IN1					
P02	P02/TIOA1/SCK0_1/IN2					
P03	P03/TIOB1/IN3					
P04	P04/TIOA2/SOUT1/IN4					
P05	P05/TIOB2/SIN1/IN5					
P06	P06/TIOA3/SCK1/IN6					
P07	P07/TIOB3/IN7					
P10	P10/TIOA4/SOUT2/AIN0/INT0	Output Hi-Z	Output Hi-Z/Input enabled	Last state maintained	Last state maintained	Output Hi-Z/ Internal input "0" fixed Input enabled when the selection of interruptfunction is enabled
P11	P11/TIOB4/SIN2/BIN0/INT1					
P12	P12/TIOA5/SCK2/ZIN0/INT2					
P13	P13/TIOB5/INT3					
P14	P14/TIOA6/SOUT3/AIN1/INT4					
P15	P15/TIOB6/SIN3/BIN1/INT5					
P16	P16/TIOA7/SCK3/ZIN1/INT6					
P17	P17/TIOB7/INT7					

(Continued)

MB91625 Series

	Function name	Initial Value		Sleep Mode	Standby Mode	
name		$\begin{gathered} \hline \overline{\text { INIT }}=\text { "L" } \\ \text { Period } \end{gathered}$	$\begin{gathered} \overline{\mathrm{INIT}}=\text { "H" } \\ \text { Period } \end{gathered}$		SLVL1 $=0$	SLVL1 $=1$
P20	P20/TIOA8/SOUT4/AIN2	Output Hi-Z	Output Hi-Z/Input enabled	Last state maintained	Last state maintained	Output Hi -Z/Internal input "0" fixed
P21	P21/TIOB8/SIN4/BIN2					
P22	P22/TIOA9/SCK4/ZIN2					
P23	P23/TIOB9					
P24	P24/TIOA10/SOUT5/AIN3/OUT0					
P25	P25/TIOB10/SIN5/BIN3/OUT1					
P26	P26/TIOA11/SCK5/ZIN3/OUT2					
P27	P27/TIOB11/OUT3					
P30	P30/TIOA12/SOUT6/INT8	Output Hi-Z	Output Hi-Z/Input enabled	Last state maintained	Last state maintained	Output Hi-Z/Internal input "0" fixed Input enabled when the selection of interrupt function is enabled
P31	P31/TIOB12/SIN6/INT9					
P32	P32/TIOA13/SCK6/INT10					
P33	P33/TIOB13/INT11					
P34	P34/TIOA14/SOUT7/OUT4/ INT12					
P35	P35/TIOB14/SIN7/OUT5/INT13					
P36	P36/TIOA15/SCK7/OUT6/INT14					
P37	P37/TIOB15/OUT7/INT15					
P40	P40/SOUT8	Output Hi-Z	Output Hi-Z/Input enabled	Last state maintained	Last state maintained	Output Hi-Z/Internal input "0" fixed
P41	P41/SIN8					
P42	P42/SCK8					
P43	P43					
P44	P44/SOUT9					
P45	P45/SIN9					
P46	P46/SCK9					
P47	P47					

(Continued)

MB91625 Series

(Continued)

MB91625 Series

Pin name	Function name	Initial Value		Sleep Mode	Standby Mode	
		$\begin{aligned} & \hline \overline{\text { INIT }}=\text { "L" } \\ & \text { Period } \end{aligned}$	$\begin{gathered} \overline{\mathrm{INIT}}=\text { "H" } \\ \text { Period } \end{gathered}$		SLVL1 $=0$	SLVL1 $=1$
P60	P60/AIN2_1	Output Hi-Z	Output HiZ/Input enabled	Last state maintained or Input enabled	Last state maintained	Output Hi-Z/ Internal input "0" fixed
P61	P61/BIN2_1					
P62	P62/ZIN2_1					
P63	P63/FRCK1_1/INT22_2					Output Hi-Z/ Internal input "0" fixed Input enabled when the selection of interrupt function is enabled
P64	P64/AIN3_1					
P65	P65/BIN3_1/ADTRG0_1					Output Hi-Z/ Internal input "0" fixed
P66	P66/ZIN3_1/FRCK0_1					
P67	P67/INT23_2					Output Hi-Z/ Internal input "0" fixed Input enabled when the selection of interrupt function is enabled
P70	P70/AN0/OUT0_1/INT16	Output Hi-Z	Output Hi-Z/Input disabled	Last state maintained	Last state maintained	Output Hi-Z/ Internal input "0" fixed Input enabled when the selection of interrupt function is enabled
P71	P71/AN1/OUT1_1/INT17					
P72	P72/AN2/TMO0/OUT2_1/INT18					
P73	P73/AN3/TMO1/OUT3_1/INT19					
P74	P74/AN4/TMO2/OUT4_1/INT20					
P75	P75/AN5/SOUT0/TMIO/OUT5_1/ INT21					
P76	P76/AN6/SIN0/TMII/OUT6_1/ INT22					
P77	P77/AN7/SCK0/TMI2/OUT7_1/ INT23					

(Continued)

MB91625 Series

(Continued)

	Function name	Initial Value		Sleep Mode	Standby Mode	
name		$\begin{gathered} \hline \overline{\text { INITT }}=\text { "L" } \\ \text { Period } \end{gathered}$	$\begin{aligned} & \hline \overline{\text { NITT }}=\text { "H" } \\ & \text { Period } \end{aligned}$		SLVL1 $=0$	SLVL1 $=1$
P80	P80/AN8/IN0_1/INT24	Output Hi-Z	Output Hi-Z/Input disabled	Last state maintained	Last state maintained	Output Hi-Z/ Internal input "0" fixed Input enabled when the selection of interrupt function is enabled
P81	P81/AN9/IN1_1/INT25					
P82	P82/AN10/IN2_1/INT26					
P83	P83/AN11/IN3_1/INT27					
P84	P84/AN12/IN4_1/INT28					
P85	P85/AN13/IN5_1/INT29					
P86	P86/AN14/IN6_1/INT30					
P87	P87/AN15/IN7_1/INT31					
P90	P90/DA0	Output Hi-Z	Output Hi-Z/Input enabled	Last state maintained	Last state maintained	Output Hi-Z/ Internal input "0" fixed
P91	P91/DA1					
P92	P92					
PA0	PA0/INT16_1	Output Hi-Z	Output Hi-Z/Input disabled	Last state maintained	Last state maintained	Output Hi-Z/ Internal input "0" fixed Input enabled when the selection of interrupt function is enabled
PA1	PA1/INT17_1					
PA2	PA2/TMO0_1/INT18_1					
PA3	PA3/TMO1_1/INT19_1					
PA4	PA4/TMO2_1/INT20_1					
PA5	PA5/TMIO_1/INT21_1					
PA6	PA6/TMI1_1/INT22_1					
PA7	PA7/TMI2_1/INT23_1					
PK0	PKO	Output Hi-Z	Internal input "0" fixed	Last state maintained	Last state maintained	Output $\mathrm{Hi}-\mathrm{Z} /$ Internal input "0" fixed
PK1	PK1		Output			
PK2	PK2/ADTRG0_2		put enabled			

MB91625 Series

- List of pin status (serial write mode)

Pin name	Function name	During initialization	During asynchronous write operation	During synchronous write operation
		$\overline{\text { INIT }}=$ "L"	$\overline{\text { INTT }}=$ " ${ }^{\text {H" }}$	
$\overline{\mathrm{INIT}}$	$\overline{\text { INIT }}$	-	-	-
X0	X0	Input enabled	Input enabled	Input enabled
X1	X1	Input enabled	Input enabled	Input enabled
X0A	XOA (When INIT input, see PK1. When port selected, input disabled)	Input disabled	Input disabled	Input disabled
X1A	X1A (When INIT input, see PK0. When port selected, input disabled)	Input disabled	Input disabled	Input disabled
MD0	MD0	Input enabled	Input enabled	Input enabled
MD1	MD1	Input enabled	Input enabled	Input enabled
P00	P00/TIOAO/SOUTO_1/INO	Output Hi-Z	Output Hi-Z/Input enabled	Output Hi-Z/Input enabled
P01	P01/TIOB0/SIN0_1/IN1			
P02	P02/TIOA1/SCK0_1/IN2			
P03	P03/TIOB1/IN3			
P04	P04/TIOA2/SOUT1/IN4			
P05	P05/TIOB2/SIN1/IN5			
P06	P06/TIOA3/SCK1/IN6			
P07	P07/TIOB3/IN7			
P10	P10/TIOA4/SOUT2/AIN0/INT0	Output Hi-Z	Output Hi-Z/Input enabled	Output Hi-Z/Input enabled
P11	P11/TIOB4/SIN2/BIN0/INT1			
P12	P12/TIOA5/SCK2/ZIN0/INT2			
P13	P13/TIOB5/INT3			
P14	P14/TIOA6/SOUT3/AIN1/INT4			
P15	P15/TIOB6/SIN3/BIN1/INT5			
P16	P16/TIOA7/SCK3/ZIN1/INT6			
P17	P17/TIOB7/INT7			

(Continued)

MB91625 Series

Pin name	Function name	During initialization	During asynchronous write operation	During synchronous write operation
		$\overline{\text { INIT }}$ = "L"	$\overline{\text { INIT }}$ = "H"	
P20	P20/TIOA8/SOUT4/AIN2	Output Hi-Z	Output Hi-Z/Input enabled	Output Hi-Z/Input enabled
P21	P21/TIOB8/SIN4/BIN2			
P22	P22/TIOA9/SCK4/ZIN2			
P23	P23/TIOB9			
P24	P24/TIOA10/SOUT5/AIN3/OUT0			
P25	P25/TIOB10/SIN5/BIN3/OUT1			
P26	P26/TIOA11/SCK5/ZIN3/OUT2			
P27	P27/TIOB11/OUT3			
P30	P30/TIOA12/SOUT6/INT8	Output Hi-Z	Output Hi-Z/Input enabled	Output Hi-Z/Input enabled
P31	P31/TIOB12/SIN6/INT9			
P32	P32/TIOA13/SCK6/INT10			
P33	P33/TIOB13/INT11			
P34	P34/TIOA14/SOUT7/OUT4/ INT12			
P35	P35/TIOB14/SIN7/OUT5/INT13			
P36	P36/TIOA15/SCK7/OUT6/INT14			
P37	P37/TIOB15/OUT7/INT15			
P40	P40/SOUT8	Output Hi-Z	Output Hi-Z/Input enabled	Output Hi-Z/Input enabled
P41	P41/SIN8			
P42	P42/SCK8			
P43	P43			
P44	P44/SOUT9			
P45	P45/SIN9			
P46	P46/SCK9			
P47	P47			
P50	P50/SOUT10/AIN0_1	Output Hi-Z	Output Hi-Z/Input enabled	Output Hi-Z/Input enabled
P51	P51/SIN10/BIN0_1			
P52	P52/SCK10/ZIN0_1			
P53	P53/FRCK1/INT21_2			
P54	P54/SOUT11/AIN1_1			
P55	P55/SIN11/BIN1_1/ADTRG0			
P56	P56/SCK11/ZIN1_1/FRCK0			
P57	P57			

(Continued)

MB91625 Series

Pin name	Function name	During initialization	During asynchronous write operation	During synchronous write operation
		$\overline{\text { INIT }=\text { "L" }}$	$\overline{\text { INIT }=\text { "H" }}$	
P60	P60/AIN2_1	Output Hi-Z	Output Hi-Z/Input enabled	Output Hi-Z/Input enabled
P61	P61/BIN2_1			
P62	P62/ZIN2_1			
P63	P63/FRCK1_1/INT22_2			
P64	P64/AIN3_1			
P65	P65/BIN3_1/ADTRG0_1			
P66	P66/ZIN3_1/FRCK0_1			
P67	P67/INT23_2			
P70	P70/AN0/OUT0_1/INT16	Output Hi-Z	Output Hi-Z/Input disabled	Output Hi-Z/Input disabled
P71	P71/AN1/OUT1_1/INT17			
P72	P72/AN2/TMO0/OUT2_1/INT18			
P73	P73/AN3/TMO1/OUT3_1/INT19			
P74	P74/AN4/TMO2/OUT4_1/INT20			
P75	P75/AN5/SOUT0/TMI0/OUT5_1/ INT21	Output Hi-Z/Input enabled	Output	Output
P76	P76/AN6/SIN0/TMI1/OUT6_1/ INT22	Output Hi-Z	Output Hi-Z/ Input enabled	Output Hi-Z/ Input enabled
P77	P77/AN7/SCK0/TMI2/OUT7_1/ INT23		Output Hi-Z/ Input disabled	Output Hi-Z/ Input disabled
P80	P80/AN8/IN0_1/INT24	Output Hi-Z	Output Hi-Z/Input disabled	Output Hi-Z/Input disabled
P81	P81/AN9/IN1_1/INT25			
P82	P82/AN10/IN2_1/INT26			
P83	P83/AN11/IN3_1/INT27			
P84	P84/AN12/IN4_1/INT28			
P85	P85/AN13/IN5_1/INT29			
P86	P86/AN14/IN6_1/INT30			
P87	P87/AN15/IN7_1/INT31			
P90	P90/DA0	Output Hi-Z	Output Hi-Z/Input enabled	Output Hi-Z/Input enabled
P91	P91/DA1			
P92	P92			

(Continued)

MB91625 Series

(Continued)

Pin name	Function name	During initialization	During asynchronous write operation	During synchronous write operation
		$\overline{\text { INIT }}$ = "L"	INIT = "H"	
PA0	PA0/INT16_1	Output Hi-Z	Output Hi-Z/Input disabled	Output Hi-Z/Input disabled
PA1	PA1/INT17_1			
PA2	PA2/TMO0_1/INT18_1			
PA3	PA3/TMO1_1/INT19_1			
PA4	PA4/TMO2_1/INT20_1			
PA5	PA5/TMIO_1/INT21_1			
PA6	PA6/TMI1_1/INT22_1			
PA7	PA7/TMI2_1/INT23_1			
PK0	PK0	Output Hi-Z	Output Hi-Z/Input disabled	Output Hi-Z/Input disabled
PK1	PK1			
PK2	PK2/ADTRG0_2		Output Hi-Z/Input enabled	Output Hi-Z/Input enabled

MB91625 Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1, *2	Vcc	Vss - 0.3	Vss + 4.0	V	
Analog power supply voltage*1, *3	AVcc	Vss -0.3	Vss + 4.0	V	
Analog reference voltage*1, *3	AVRH	Vss - 0.3	Vss +4.0	V	
Input voltage*1	V	Vss - 0.3	$\mathrm{Vcc}+0.3(\leq 4.0)$	V	*7
		Vss - 0.3	Vss + 6.0	V	5 V tolerant
Analog pin input voltage*1	VIA	Vss - 0.3	Vss + 4.0	V	
Output voltage*1	Vo	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	
Maximum clamp current	Iclamp	-4	+ 4	mA	*8
Total maximum clamp current	$\Sigma \mid$ Iclamp\|	-	40	mA	*8
"L" level maximum output current*4	loL	-	10	mA	
"L" level average output current*5	lolav	-	4	mA	
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current* ${ }^{*}$	Elolav	-	50	mA	
"H" level maximum output current*4	Іон	-	- 10	mA	
"H" level average output current*5	lohav	-	-4	mA	
"H" level total maximum output current	Elon	-	- 100	mA	
"H" level total average output current*	Σ Iohav	-	-50	mA	
Power consumption	PD	-	500	mW	
Operating temperature	Ta	-40	+ 85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tsta	-55	+ 125	${ }^{\circ} \mathrm{C}$	

*1: The parameter is based on $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0.0 \mathrm{~V}$.
*2 : Vcc must not drop below Vss - 0.3 V.
*3 : Be careful not to exceed $\mathrm{Vcc}+0.3 \mathrm{~V}$, for example, when the power is turned on.
*4 : The maximum output current is the peak value for a single pin.
*5 : The average output is the average current for a single pin over a period of 100 ms .
*6 : The total average output current is the average current for all pins over a period of 100 ms .
*7 : If the input current or the maximum input current are limited by some means with external components, the Iclamp rating supersedes the V_{1} rating.
(Continued)

MB91625 Series

2. Recommended Operating Conditions

$$
\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}\right)
$$

Parameter	Symbol	Value		Unit	Remarks
		V_{cc}	2.7		
Power supply voltage	AV cc	2.7	3.6	V	$\mathrm{AV} \mathrm{cc} \leq \mathrm{V}_{\mathrm{cc}}$
Analog power supply voltage	AVRH	$\mathrm{AV}_{\mathrm{ss}}$	$\mathrm{AV}_{\mathrm{cc}}$	V	
Analog reference voltage	Ta	-40	+85	${ }^{\circ} \mathrm{C}$	
Operating temperature					

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

MB91625 Series

(Continued)
$\left(\mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to 3.6 V , V ss $=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77,	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V} \\ \mathrm{I} \mathrm{H}=-4 \mathrm{~mA} \end{gathered}$	V cc-0.5	-	Vcc	V	
"L" level output voltage	VoL	P90 to P92, PA0 to PA7, PK0 to PK2	$\begin{aligned} & \mathrm{V} \mathrm{cc}=2.7 \mathrm{~V} \\ & \mathrm{loL}=4 \mathrm{~mA} \end{aligned}$	Vss	-	0.4	V	
				-5	-	+5	$\mu \mathrm{A}$	Digital pin
	11.	-	-	- 10	-	+ 10	$\mu \mathrm{A}$	Analog pin
Pull-up resistance value	Rpu	Pull-up pin	-	16.6	33	66	$\mathrm{k} \Omega$	
Input capacitance	Cin	Other than Vcc, Vss, AVcc, AVss, AVRH	-	-	10	15	pF	

*1: When opened, all ports are fixed to output
*2 : $\mathrm{Ta}=+25^{\circ} \mathrm{C}$ and $\mathrm{Vcc}=3.3 \mathrm{~V}$
*3: X0 $=15 \mathrm{MHz}, \mathrm{CPU}$ clock $=60 \mathrm{MHz}$ and $\mathrm{XOA}=$ when stopped
*4 : X0 = STOP and XOA $=32 \mathrm{kHz}$

- V -I characteristics

Conditions
Min : Process = Slow, $\mathrm{Ta}=+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=2.7 \mathrm{~V}$
Typ : Process $=$ Typical, $\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=3.3 \mathrm{~V}$
Max : Process $=$ Fast, $\mathrm{Ta}=-40^{\circ} \mathrm{C}, \mathrm{Vcc}=3.6 \mathrm{~V}$

Voh-Vcc [V]

Vol - Iol

MB91625 Series

- Operation guaranteed range

- When the main clock is selected ($\mathrm{DIVB}=000$)

- When the PLL clock is selected

*1 : DIVB $=111$, ODS $=11$, and PLL macro oscillation frequency $=30 \mathrm{MHz}$
*2 : DIVB $=000$, ODS $=01$, and PLL macro oscillation frequency $=60 \mathrm{MHz}$
- When the sub clock is selected ($\mathrm{FcL}=32.768 \mathrm{kHz}$)

Internal operation clock Fcc (kHz)

MB91625 Series

- Example of configuration
- When the main clock is selected (DIVB $=000^{* 1}$)
Internal operation clock
Fcc (MHz)

X0 input frequency (MHz)
- When the PLL clock is selected (DIVB $=000^{* 1}$, PDS $=0000^{* 2}$)

- When the PLL clock is selected (DIVB $=000^{* 1}$, PDS $=0001^{* 2}$)

*1 : The values other than DIVB $=000$ are omitted.
*2 : The values other than PDS = 0000 and 0001 are omitted.
Note: DIVB :Base clock division configuration bit
ODS :PLL macro oscillation clock division rate select bit
PDS :PLL input clock division select bit
PMS :PLL clock multiple rate select bit

MB91625 Series

(2) Sub Clock (SBCLK) Input Standard
$\left(\mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Input frequency	Fcı	X0A, X1A	-	-	32.768	-	kHz	When crystal oscillator is connected
			-	-	32.768	-	kHz	When using external clock
Input clock cycle	tcyul		-	-	30.518	-	$\mu \mathrm{s}$	When using external clock
Input clock pulse width	-		Pwh/toyll PwL/tcyll	45	-	55	\%	When using external clock
Input clock rise time and fall time	$\begin{aligned} & \text { tcF } \\ & \text { tcr } \end{aligned}$		-	-	-	200	ns	When using external clock

(3) Conditions of PLL
$\left(\mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to 3.6 V , V ss $=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Value			Remarks	
			Typ	Max			
PLL oscillation stabilization wait time (LOCK UP time)	tLock	-	600	-	-	$\mu \mathrm{s}$	Time from when the PLL starts operating until the oscillation stabilizes
PLL input clock frequency	fPLL	-	4	-	24	MHz	
PLL multiple rate	-	-	2	-	15	Multiplied by	
PLL macro oscillation clock frequency	fPLLo	-	30	-	60	MHz	

(4) Regulator Voltage Stabilization Wait Time
$\left(\mathrm{V} \mathrm{Cc}=\mathrm{AV} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Value		Unit	Remarks
			Min	Max		
Regulator voltage stabilization wait time	treg	-	50	-	$\mu \mathrm{s}$	Time taken for the regulator voltage to stabilize

Note : This is the time from when the external power supply stabilizes (after reaching 2.7 V).

MB91625 Series

(7) Synchronous serial (CSIO) timing
$\left(\mathrm{Vcc}=\mathrm{AV} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to 3.6 V , $\mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

- Synchronous serial (SPI $=0, \operatorname{SCINV}=0)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCKn	Internal shift clock operation	4tcycp	-	ns
SCK $\downarrow \rightarrow$ SOUT delay time	tslovi	$\begin{aligned} & \hline \text { SCKn } \\ & \text { SOUTn } \end{aligned}$		- 30	$+30$	ns
SIN \rightarrow SCK \uparrow setup time	tivshi	SCKn SINn		45	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	tshixI	SCKn SINn		0	-	ns
Serial clock "L" pulse width	tsLsh	SCKn	External shift clock operation	2tcycp - 10	-	ns
Serial clock "H" pulse width	tshsL	SCKn		tcycp + 10	-	ns
SCK $\downarrow \rightarrow$ SOUT delay time	tslove	$\begin{aligned} & \text { SCKn } \\ & \text { SOUTn } \end{aligned}$		-	40	ns
SIN \rightarrow SCK \uparrow setup time	tivshe	SCKn SINn		15	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	tshixe	SCKn SINn		20	-	ns
SCK fall time	t_{F}	SCKn	-	-	5	ns
SCK rise time	tR	SCKn	-	-	5	ns

Notes: • The above standards apply to CLK synchronous mode.

- tcrcp indicates the peripheral clock cycle time.
- When the external load capacitance $C=50 \mathrm{pF}$.

MB91625 Series

- Synchronous serial (SPI = 0, SCINV = 1)

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCKn	Internal shift clock operation	4tcycp	-	ns
SCK $\uparrow \rightarrow$ SOUT delay time	tshovi	SCKn SOUTn		- 30	+ 30	ns
SIN \rightarrow SCK \downarrow setup time	tivsLı	sCKn SINn		45	-	ns
SCK $\downarrow \rightarrow$ SIN hold time	tsLIxI	SCKn SINn		0	-	ns
Serial clock "L" pulse width	tsısh	SCKn	External shift clock operation	2tcycp - 10	-	ns
Serial clock "H" pulse width	tshsL	SCKn		tCYCP + 10	-	ns
SCK $\uparrow \rightarrow$ SOUT delay time	tshove	SCKn SOUTn		-	40	ns
SIN \rightarrow SCK \downarrow setup time	tivsle	SCKn SINn		15	-	ns
SCK $\downarrow \rightarrow$ SIN hold time	tstixe	SCKn SINn		20	-	ns
SCK fall time	t_{F}	SCKn		-	5	ns
SCK rise time	tR	SCKn		-	5	ns

Notes: • The above standards apply to CLK synchronous mode.

- tcycp indicates the peripheral clock cycle time.
- When the external load capacitance $C=50 \mathrm{pF}$.

$M S$ bit $=1$

MB91625 Series

- Synchronous serial (SPI = 1,SCINV =0)

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCKn	Internal shift clock operation	4tcycp	-	ns
SCK $\uparrow \rightarrow$ SOUT delay time	tshovi	SCKn SOUTn		-30	+ 30	ns
SIN \rightarrow SCK \downarrow setup time	tıssu	$\begin{aligned} & \hline \text { SCKn } \\ & \text { SINn } \end{aligned}$		45	-	ns
SCK $\downarrow \rightarrow$ SIN hold time	tsuxı	$\begin{aligned} & \hline \text { SCKn } \\ & \text { SINn } \end{aligned}$		0	-	ns
SOUT \rightarrow SCK \downarrow delay time	tsovıı	$\begin{aligned} & \hline \text { SCKn } \\ & \text { SOUTn } \end{aligned}$		2tcycp - 30	-	ns
Serial clock "L" pulse width	tsısh	SCKn	External shift clock operation	2tcycp - 10	-	ns
Serial clock "H" pulse width	tshsL	SCKn		tcycp + 10	-	ns
SCK $\uparrow \rightarrow$ SOUT delay time	tshove	SCKn SOUTn		-	40	ns
SIN \rightarrow SCK \downarrow setup time	tivsLe	$\begin{aligned} & \hline \text { SCKn } \\ & \text { SINn } \end{aligned}$		15	-	ns
SCK $\downarrow \rightarrow$ SIN hold time	tslıe	$\begin{aligned} & \text { SCKn } \\ & \text { SINn } \end{aligned}$		20	-	ns
SCK fall time	tF	SCKn		-	5	ns
SCK rise time	tR	SCKn		-	5	ns

Notes: - The above standards apply to CLK synchronous mode.

- tcycp indicates the peripheral clock cycle time.
- When the external load capacitance $C=50 \mathrm{pF}$.

$M S$ bit $=0$

MB91625 Series

- Synchronous serial (SPI = 1, SCINV = 1)

Parameter	$\begin{aligned} & \text { Sym- } \\ & \text { bol } \end{aligned}$	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscrc	SCKn	Internal shift clock operation	4tcycp	-	ns
SCK $\downarrow \rightarrow$ SOUT delay time	tsovi	$\begin{aligned} & \text { SCKn } \\ & \text { SOUTn } \end{aligned}$		-30	+30	ns
SIN \rightarrow SCK \uparrow setup time	tivsFI	$\begin{aligned} & \text { SCKn } \\ & \text { SINn } \end{aligned}$		45	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	tshixI	$\begin{aligned} & \text { SCKn } \\ & \text { SINn } \end{aligned}$		0	-	ns
SOUT \rightarrow SCK \uparrow delay time	tsover	$\begin{aligned} & \text { SCKn } \\ & \text { SOUTn } \end{aligned}$		2tcycp - 30	-	ns
Serial clock "L" pulse width	tstsh	SCKn	External shift clock operation	2tcycp - 10	-	ns
Serial clock "H" pulse width	tsHSL	SCKn		tcycp + 10	-	ns
SCK $\downarrow \rightarrow$ SOUT delay time	tslove	$\begin{aligned} & \text { SCKn } \\ & \text { SOUTn } \end{aligned}$		-	40	ns
SIN \rightarrow SCK \uparrow setup time	tivshe	$\begin{aligned} & \text { SCKn } \\ & \text { SINn } \end{aligned}$		15	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	tshixe	$\begin{aligned} & \text { SCKn } \\ & \text { SINn } \end{aligned}$		20	-	ns
SCK fall time	tF	SCKn		-	5	ns
SCK rise time	tr	SCKn		-	5	ns

Notes: - The above standards apply to CLK synchronous mode.

- tcycp indicates the peripheral clock cycle time.
- When the external load capacitance $C=50 \mathrm{pF}$.

MB91625 Series

- External clock (EXT = 1) : asynchronous only

Parameter	Symbol	Conditions	Value		Unit
			Min	Max	
Serial clock "L" pulse width	tsısh	$C L=50 \mathrm{pF}$	tcycp + 10	-	ns
Serial clock "H" pulse width	tshsL		tcycp + 10	-	ns
SCK fall time	tF		-	5	ns
SCK rise time	tR		-	5	ns

SCK

MB91625 Series

(8) Free-run Timer Clock, Reload Timer Event Input, Up/down Counter Input, Input Capture Input, Interrupt Input Timing

$$
\left(\mathrm{Vcc}=\mathrm{AV} \mathrm{cc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	tтwh ttiwn	$\begin{gathered} \hline \text { FRCKn } \\ \text { TMIn } \\ \text { INn } \\ \text { AINn } \\ \text { BINn } \\ \text { ZINn } \end{gathered}$	-	2 tcycp	-	ns	*1
		INTn	-	3 toycp	-	ns	*1
			-	1.0	-	$\mu \mathrm{s}$	*2

*1: tcycp indicates peripheral clock cycle time, except when in stop mode, in main timer mode and in watch mode.
*2 : When in stop mode, in main timer mode, or in watch mode.

(9) A/D Converter Trigger Input Timing
$\left(\mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to 3.6 V , $\mathrm{V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condi- tions	Value		Unit	Remarks
A/D converter trigger input		ADTRGn		2 tcycp	-		*

* : tcycp indicates peripheral clock cycle time.

MB91625 Series

(10) ${ }^{12} \mathrm{C}$ Timing
$\left(\mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to 3.6 V , V ss $=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Typical mode		High-speed mode		Unit
				Min	Max	Min	Max	
SCL clock frequency	fscl	$\begin{aligned} & \hline \text { SCKn } \\ & \text { (SCLn) } \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}=(\mathrm{Vp} / \mathrm{loL})^{\star_{1}} \end{gathered}$	0	100	0	400	kHz
"(Repeated) START condition" hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thosta	SOUTn (SDAn) SCKn (SCLn)		4.0	-	0.6	-	$\mu \mathrm{S}$
SCL clock "L" width	tıow	$\begin{aligned} & \hline \text { SCKn } \\ & \text { (SCLn) } \end{aligned}$		4.7	-	1.3	-	$\mu \mathrm{s}$
SCL clock "H" width	thigh	$\begin{aligned} & \text { SCKn } \\ & \text { (SCLn) } \end{aligned}$		4.0	-	0.6	-	$\mu \mathrm{s}$
"Repeated START condition" setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsusta	$\begin{aligned} & \text { SCKn } \\ & \text { (SCLn) } \end{aligned}$		4.7	-	0.6	-	$\mu \mathrm{s}$
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	thidat	SOUTn (SDAn) SCKn (SCLn)		0	$3.45{ }^{* 2}$	0	0.9*3	$\mu \mathrm{s}$
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsudat	SOUTn (SDAn) SCKn (SCLn)		250	-	100	-	ns
"STOP condition" setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsusto	SOUTn (SDAn) SCKn (SCLn)		4.0	-	0.6	-	$\mu \mathrm{s}$
Bus free time between "STOP condition" and "START condition"	tbuf	-		4.7	-	1.3	-	$\mu \mathrm{s}$
Noise filter	tsp	-	-	2tcycp*4	-	$2 \mathrm{tcycp}{ }^{* 4}$	-	ns

*1: R and C represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and loL indicates Vol guaranteed current.
*2 : The maximum thdдat must satisfy that it doesn't extend at least "L" period (tow) of device's SCL signal.
*3: A high-speed mode $I^{2} \mathrm{C}$ bus device can be used on a standard mode $I^{2} \mathrm{C}$ bus system as long as the device satisfies the requirement of "tsudat $\geq 250 \mathrm{~ns}$ ".
*4 : tcycp is the peripheral clock cycle time. To use $\mathrm{I}^{2} \mathrm{C}$, set the peripheral bus clock at 8 MHz or more.

MB91625 Series

MB91625 Series

5. Electrical Characteristics for the A/D Converter

Parameter	Pin name	Value			Unit	Remarks
		Min	Typ	Max		
Resolution	-	-	-	10	bit	
Total error	-	- 5.0	-	+ 5.0	LSB	
Linearity error	-	-3.5	-	+ 3.5	LSB	
Differential linearity error	-	-3	-	+ 3	LSB	
Zero transition voltage	$\begin{gathered} \text { ANO } \\ \text { to } \\ \text { AN15 } \end{gathered}$	-1.5	+ 0.5	+4	LSB	$\begin{aligned} & \mathrm{AV} \mathrm{cc}=3.3 \mathrm{~V}, \\ & \mathrm{AVRH}=3.3 \mathrm{~V} \end{aligned}$
Full transition voltage	$\begin{gathered} \text { AN0 } \\ \text { to } \\ \text { AN15 } \end{gathered}$	AVRH - 4	AVRH - 1.5	AVRH + 0.5	LSB	
Compare time	-	$0.72^{* 3}$	-	-	$\mu \mathrm{s}$	PCLK $=33 \mathrm{MHz}$
Conversion time	-	$1.2{ }^{* 1}$	-	-	$\mu \mathrm{s}$	PCLK $=33 \mathrm{MHz}$
Power supply current (analog + digital)	AVcc	-	-	3.5	mA	When operating A/D (with D/A stopped)
		-	-	11	$\mu \mathrm{A}$	At power-down*2
Reference power supply current (between AVRH and AVss)	AVRH	-	-	0.6	mA	When operating A/D $\mathrm{AVRH}=3.0 \mathrm{~V}$
		-	-	5	$\mu \mathrm{A}$	At power-down*2
Analog input capacitance	-	-	-	8.5	pF	
Interchannel disparity	-	-	-	4	LSB	
Analog port input current	ANO to AN15	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	ANO to AN15	AVss	-	AVRH	V	
Reference voltage	AVRH	AVss	-	AVcc	V	

*1: It depends on the actual external load and the clock cycle supplied to peripheral resources. Make sure to satisfy PCLK cycle $\times 4$ or over + below (Equation 1). The condition of minimum conversion time is the value when PCLK $=33 \mathrm{MHz}$, sampling time: $0.424 \mu \mathrm{~s}$, external impedance: $1.4 \mathrm{k} \Omega$ or below, compare time: $0.72 \mu \mathrm{~s}$.
*2 : The current when the CPU is in stop mode and the A/D converter is not operating.
*3 : Compare time $=\{(C T+1) \times 10+4\} \times$ peripheral clock (PCLK) period. (CT indicates compare time setting bits.) The condition of the minimum compare time is when $\mathrm{CT}=1$ and $\mathrm{PCLK}=33 \mathrm{MHz}$.
(Continued)

MB91625 Series

(Continued)

The output impedance of the external circuit connected to the analog input affects the sampling time of the A/D converter. Design the output impedance of the output circuit such that the required sampling time is less than the value of Ts calculated from the following equation.
(Equation1) Ts $=($ Rin + Rext $) \times \operatorname{Cin} \times 8$
Ts : Sampling time
Rin : Input resistance of $A / D=5.3 \mathrm{k} \Omega$
Cin : Input capacitance of $\mathrm{A} / \mathrm{D}=8.5 \mathrm{pF}$
Rext : Output impedance of external circuit
If the sampling time is set as 600 ns ,
$600 \mathrm{~ns} \geq(5.3 \mathrm{k} \Omega+$ Rext $) \times 8.5 \mathrm{pF} \times 8$
\therefore Rext $\leq 3.5 \mathrm{k} \Omega$
And the impedance of the external circuit therefore needs to be $3.5 \mathrm{k} \Omega$ or less.

MB91625 Series

(Continued)

MB91625 Series

6. Electrical Characteristics for the D/A Converter

$\left(\mathrm{Vcc}=\mathrm{AV} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to 3.6 V , $\mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Pin name	Value			Unit	Remarks
		Min	Typ	Max		
Resolution	-	-	-	8	bit	
Linearity error	-	-2.0	-	+2.0	LSB	When the output is unloaded
Differential linearity error	-	- 1.0	-	+ 1.0	LSB	When the output is unloaded
Conversion time	-	-	0.6	-	$\mu \mathrm{s}$	When load capacitance $\left(C_{L}\right)=20 \mathrm{pF}$
	-	-	3.0	-	$\mu \mathrm{s}$	When load capacitance $(\mathrm{CL})=100 \mathrm{pF}$
Analog output impedance	DA0, DA1	3.19	3.51	5.85	k Ω	
Analog current	AVcc	-	300	-	$\mu \mathrm{A}$	$10 \mu \mathrm{~s}$ conversion, when the output is unloaded (When 2 channels operating, A/D stopped)
		-	-	3600*	$\mu \mathrm{A}$	When the input digital code is fixed at 7 Ан or 85 н (When 2 channels operating, A / D stopped)
		-	-	11	$\mu \mathrm{A}$	At power-down (When A/D stopped)

*: The current consumption of the D/A converter varies with input digital code. The standard value indicates the current consumed when the digital code that maximizes the current consumption is input.

MB91625 Series

7. Flash Memory Write/Erase Characteristics

$$
\left(\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\right)
$$

Parameter	Value			Unit	Remarks	
	Min	Typ	Max			
Sector erase time	-	0.9	3.6	s	Excludes write time prior to internal erase	
Half word (16 bits) write time	-	23	370	$\mu \mathrm{~s}$	Not including system-level overhead time.	
Chip erase time ${ }^{\star 1}$	-	7.2	28.8	s	Excludes write time prior to internal erase (When equipped with 512 Kbytes$)$	
Erase/write cycles	10000	-	-	cycle	Average $\mathrm{Ta} \leq+85^{\circ} \mathrm{C}$	
Flash memory data hold time	$10^{\star 2}$	-	-	year	Average $\mathrm{Ta} \leq+85^{\circ} \mathrm{C}$	

*1: The chip erase time is the sector erase time multiplied across all sectors.
*2: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$).

MB91625 Series

PACKAGE DIMENSION

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan
Tel: +81-3-5322-3329
http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC.
1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Pittlerstrasse 47, 63225 Langen, Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD.
206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://kr.fujitsu.com/fmk/

Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, \#05-08 New Tech Park 556741 Singapore
Tel : +65-6281-0770 Fax : +65-6281-0220
http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.
Rm. 3102, Bund Center, No. 222 Yan An Road (E),
Shanghai 200002, China
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605
http://cn.fujitsu.com/fmc/
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.
10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel : +852-2377-0226 Fax : +852-2376-3269
http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

